Application of stratified implantation for silicon micro-strip detectors
In the fabrication of a 48 mm×48 mm silicon micro-strip nuclear radiation detector with 96 strips on each side, a perfect P-N junction cannot be formed consistently by the one-step implantation process, and thus over 50% of strips produced do not meet application requirements. However, the method of...
Saved in:
| Published in | Chinese physics C Vol. 39; no. 6; pp. 85 - 88 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.06.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1137 0254-3052 |
| DOI | 10.1088/1674-1137/39/6/066005 |
Cover
| Summary: | In the fabrication of a 48 mm×48 mm silicon micro-strip nuclear radiation detector with 96 strips on each side, a perfect P-N junction cannot be formed consistently by the one-step implantation process, and thus over 50% of strips produced do not meet application requirements. However, the method of stratified implantation not only avoids the P region between the surface of wafers and the P+ region, but also overcomes the shadow effect. With the help of the stratified implantation process, a perfect functional P-N junction can be formed, and over 95% of strips meet application requirements. |
|---|---|
| Bibliography: | nuclear radiation detectors, stratified implantation, P-N junction, reverse body resistance In the fabrication of a 48 mm×48 mm silicon micro-strip nuclear radiation detector with 96 strips on each side, a perfect P-N junction cannot be formed consistently by the one-step implantation process, and thus over 50% of strips produced do not meet application requirements. However, the method of stratified implantation not only avoids the P region between the surface of wafers and the P+ region, but also overcomes the shadow effect. With the help of the stratified implantation process, a perfect functional P-N junction can be formed, and over 95% of strips meet application requirements. 11-5641/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1674-1137 0254-3052 |
| DOI: | 10.1088/1674-1137/39/6/066005 |