A lightweight spiking neural network for EEG-based motor imagery classification

Spiking neural networks (SNNs) aim to simulate the human brain neural network, using sparse spike event streams for effective and energy-efficient spatio-temporal signal processing. This paper proposes a lightweight SNN model for electroencephalogram (EEG) based motor imagery (MI) classification, a...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 191; p. 107741
Main Authors Zhang, Herui, Wang, Haoran, An, Jiayu, Zheng, Shitao, Wu, Dongrui
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.11.2025
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2025.107741

Cover

More Information
Summary:Spiking neural networks (SNNs) aim to simulate the human brain neural network, using sparse spike event streams for effective and energy-efficient spatio-temporal signal processing. This paper proposes a lightweight SNN model for electroencephalogram (EEG) based motor imagery (MI) classification, a classical brain–computer interface paradigm. The model has three desirable characteristics: (1) it has a brain-inspired architecture; (2) it is energy efficient; and, (3) it is dataset agnostic. Within-subject and cross-subject experiments on three public datasets demonstrated the superiority of our SNN model over four classical convolutional neural network based models in EEG based MI classification.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0893-6080
1879-2782
1879-2782
DOI:10.1016/j.neunet.2025.107741