A lightweight spiking neural network for EEG-based motor imagery classification
Spiking neural networks (SNNs) aim to simulate the human brain neural network, using sparse spike event streams for effective and energy-efficient spatio-temporal signal processing. This paper proposes a lightweight SNN model for electroencephalogram (EEG) based motor imagery (MI) classification, a...
Saved in:
| Published in | Neural networks Vol. 191; p. 107741 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Ltd
01.11.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0893-6080 1879-2782 1879-2782 |
| DOI | 10.1016/j.neunet.2025.107741 |
Cover
| Summary: | Spiking neural networks (SNNs) aim to simulate the human brain neural network, using sparse spike event streams for effective and energy-efficient spatio-temporal signal processing. This paper proposes a lightweight SNN model for electroencephalogram (EEG) based motor imagery (MI) classification, a classical brain–computer interface paradigm. The model has three desirable characteristics: (1) it has a brain-inspired architecture; (2) it is energy efficient; and, (3) it is dataset agnostic. Within-subject and cross-subject experiments on three public datasets demonstrated the superiority of our SNN model over four classical convolutional neural network based models in EEG based MI classification. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0893-6080 1879-2782 1879-2782 |
| DOI: | 10.1016/j.neunet.2025.107741 |