Ultra-broadband and high-efficiency polarization conversion metasurface with multiple plasmon resonance modes
In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonan...
Saved in:
Published in | Chinese physics B Vol. 25; no. 8; pp. 158 - 162 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.08.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/25/8/084202 |
Cover
Summary: | In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency,covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%.At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. |
---|---|
Bibliography: | In this paper, we present a novel metasurface design that achieves a high-efficiency ultra-broadband cross polarization conversion. The metasurface is composed of an array of unit resonators, each of which combines an H-shaped structure and two rectangular metallic patches. Different plasmon resonance modes are excited in unit resonators and allow the polarization states to be manipulated. The bandwidth of the cross polarization converter is 82% of the central frequency,covering the range from 15.7 GHz to 37.5 GHz. The conversion efficiency of the innovative new design is higher than 90%.At 14.43 GHz and 40.95 GHz, the linearly polarized incident wave is converted into a circularly polarized wave. 11-5639/O4 polarization, metasurface, plasmon, ultra-broadband ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/25/8/084202 |