Room-temperature ferromagnetism with high magnetic moment in Cu-doped AlN single crystal whiskers
Ferromagnetism is investigated in high-quality Cu-doped A1 N single crystal whiskers.The whiskers exhibit roomtemperature ferromagnetism with a magnetic moment close to the results from first-principles calculations.High crystallinity and low Cu concentrations are found to be indispensable for high...
Saved in:
Published in | Chinese physics B Vol. 24; no. 2; pp. 414 - 418 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.02.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/24/2/027503 |
Cover
Summary: | Ferromagnetism is investigated in high-quality Cu-doped A1 N single crystal whiskers.The whiskers exhibit roomtemperature ferromagnetism with a magnetic moment close to the results from first-principles calculations.High crystallinity and low Cu concentrations are found to be indispensable for high magnetic moments.The difference between the experimental and theoretical moment values is explored in terms of the influence of nitrogen vacancies.The calculated results demonstrate that nitrogen vacancies can reduce the magnetic moments of Cu atom. |
---|---|
Bibliography: | spintronics, defects, nitrides, first-principles calculations Jiang Liang-Bao, Liu Yu, Zuo Si-Bin, and Wang Wen-Jun( Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China) Ferromagnetism is investigated in high-quality Cu-doped A1 N single crystal whiskers.The whiskers exhibit roomtemperature ferromagnetism with a magnetic moment close to the results from first-principles calculations.High crystallinity and low Cu concentrations are found to be indispensable for high magnetic moments.The difference between the experimental and theoretical moment values is explored in terms of the influence of nitrogen vacancies.The calculated results demonstrate that nitrogen vacancies can reduce the magnetic moments of Cu atom. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/24/2/027503 |