Enhanced laser-induced plasma channels in air
Plasma is a significant medium in high-energy density physics since it can hardly be damaged. For some applications such as plasma based backward Raman amplification (BRA), uniform high-density and large-scale plasma channels are required. In the previous experiment, the plasma transverse diameter a...
        Saved in:
      
    
          | Published in | Chinese physics B Vol. 25; no. 3; pp. 256 - 261 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        01.03.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1674-1056 2058-3834 1741-4199  | 
| DOI | 10.1088/1674-1056/25/3/035203 | 
Cover
| Summary: | Plasma is a significant medium in high-energy density physics since it can hardly be damaged. For some applications such as plasma based backward Raman amplification (BRA), uniform high-density and large-scale plasma channels are required. In the previous experiment, the plasma transverse diameter and density are 50-200 μm and 1-2 x 10^19 cm-3, here we enhance them to 0.8 mm and 8 x 10^19 cm-3, respectively. Moreover, the gradient plasma is investigated in our experiment. A proper plasma gradient can be obtained with suitable pulse energy and delay. The experimental results are useful for plasma physics and nonlinear optics. | 
|---|---|
| Bibliography: | plasma channel, laser-induced plasma, plasma measurement, plasma optics 11-5639/O4 Plasma is a significant medium in high-energy density physics since it can hardly be damaged. For some applications such as plasma based backward Raman amplification (BRA), uniform high-density and large-scale plasma channels are required. In the previous experiment, the plasma transverse diameter and density are 50-200 μm and 1-2 x 10^19 cm-3, here we enhance them to 0.8 mm and 8 x 10^19 cm-3, respectively. Moreover, the gradient plasma is investigated in our experiment. A proper plasma gradient can be obtained with suitable pulse energy and delay. The experimental results are useful for plasma physics and nonlinear optics. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
| ISSN: | 1674-1056 2058-3834 1741-4199  | 
| DOI: | 10.1088/1674-1056/25/3/035203 |