A theoretical exploration of the influencing factors for surface potential

Although it has been widely used to probe the interracial property, dynamics, and reactivity, the surface potential remains intractable for directly being measured, especially for charged particles in aqueous solutions. This paper presents that the surface potential is strongly dependent on the Hofm...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 6; pp. 629 - 636
Main Author 刘新敏 杨刚 李航 田锐 李睿 丁武泉 袁若
Format Journal Article
LanguageEnglish
Published 01.06.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/6/068202

Cover

More Information
Summary:Although it has been widely used to probe the interracial property, dynamics, and reactivity, the surface potential remains intractable for directly being measured, especially for charged particles in aqueous solutions. This paper presents that the surface potential is strongly dependent on the Hofmeister effect, and the theory including ion polarization and ionic correlation shows significant improvement compared with the classical theory. Ion polarization causes a strong Hofmeister effect and further dramatic decrease to surface potential, especially at low concentration; in contrast, ionic correlation that is closely associated with potential decay distance overestimates surface potential and plays an increasing role at higher ionic concentrations. Contributions of ion polarization and ionic correlation are respectively assessed, and a critical point is detected where their contributions can be exactly counteracted. Ionic correlation can be almost neglected at low ionic concentrations, while ion polarization, albeit less important at high concentrations, should be considered across the entire concentration range. The results thus obtained are applicable to other interfacial processes.
Bibliography:Hofmeister effect, ionic activity, interfacial process, potential distribution
Although it has been widely used to probe the interracial property, dynamics, and reactivity, the surface potential remains intractable for directly being measured, especially for charged particles in aqueous solutions. This paper presents that the surface potential is strongly dependent on the Hofmeister effect, and the theory including ion polarization and ionic correlation shows significant improvement compared with the classical theory. Ion polarization causes a strong Hofmeister effect and further dramatic decrease to surface potential, especially at low concentration; in contrast, ionic correlation that is closely associated with potential decay distance overestimates surface potential and plays an increasing role at higher ionic concentrations. Contributions of ion polarization and ionic correlation are respectively assessed, and a critical point is detected where their contributions can be exactly counteracted. Ionic correlation can be almost neglected at low ionic concentrations, while ion polarization, albeit less important at high concentrations, should be considered across the entire concentration range. The results thus obtained are applicable to other interfacial processes.
Liu Xin-Min, Yang Gang, Li Hang Tian Rui, Li Rui, Ding Wu-Quan, and Yuan Ruo( a) Chongqing Key Laboratory of Soil Multi-scale Interracial Process, College of Resources and Environment, Southwest University, Chongqing 400715, China b) School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/6/068202