Two-dimensional arsenic monolayer sheet predicted from first-principles
Using first-principles calculations, we investigate the two-dimensional arsenic nanosheet isolated from bulk gray arsenic. Its dynamical stability is confirmed by phonon calculations and molecular dynamics analyzing. The arsenic sheet is an indirect band gap semiconductor with a band gap of 2.21 e V...
Saved in:
Published in | Chinese physics B Vol. 24; no. 3; pp. 275 - 279 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.03.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/24/3/036301 |
Cover
Summary: | Using first-principles calculations, we investigate the two-dimensional arsenic nanosheet isolated from bulk gray arsenic. Its dynamical stability is confirmed by phonon calculations and molecular dynamics analyzing. The arsenic sheet is an indirect band gap semiconductor with a band gap of 2.21 e V in the hybrid HSE06 functional calculations. The valence band maximum(VBM) and the conduction band minimum(CBM) are mainly occupied by the 4p orbitals of arsenic atoms,which is consistent with the partial charge densities of VBM and CBM. The charge density of the VBM G point has the character of a π bond, which originates from p orbitals. Furthermore, tensile and compressive strains are applied in the armchair and zigzag directions, related to the tensile deformations of zigzag and armchair nanotubes, respectively. We find that the ultimate strain in zigzag deformation is 0.13, smaller than 0.18 of armchair deformation. The limit compressive stresses of single-layer arsenic along armchair and zigzag directions are-4.83 GPa and-4.76 GPa with corresponding strains of-0.15 and-0.14, respectively. |
---|---|
Bibliography: | arsenic sheet,hybrid density functional,strain Using first-principles calculations, we investigate the two-dimensional arsenic nanosheet isolated from bulk gray arsenic. Its dynamical stability is confirmed by phonon calculations and molecular dynamics analyzing. The arsenic sheet is an indirect band gap semiconductor with a band gap of 2.21 e V in the hybrid HSE06 functional calculations. The valence band maximum(VBM) and the conduction band minimum(CBM) are mainly occupied by the 4p orbitals of arsenic atoms,which is consistent with the partial charge densities of VBM and CBM. The charge density of the VBM G point has the character of a π bond, which originates from p orbitals. Furthermore, tensile and compressive strains are applied in the armchair and zigzag directions, related to the tensile deformations of zigzag and armchair nanotubes, respectively. We find that the ultimate strain in zigzag deformation is 0.13, smaller than 0.18 of armchair deformation. The limit compressive stresses of single-layer arsenic along armchair and zigzag directions are-4.83 GPa and-4.76 GPa with corresponding strains of-0.15 and-0.14, respectively. Pu Chun-Ying, Ye Xiao-Tao, Jiang Hua-Long, Zhang Fei-Wu, Lu Zhi-Wen, He Jun-Bao, and Zhou Da-Wei( a) College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China; b ) College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China;c) Nanochemistry Research Institute, CurOn University, Perth, WA-6845, Australia; d) State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/24/3/036301 |