Spin excitation spectra of spin-orbit coupled bosons in an optical lattice

Spin-wave excitation plays important roles in the investigation of the magnetic phases. In this paper, we study the spin-wave excitation spectra of two-component Bose gases with spin-orbit coupling in a deep square optical lattice using the spin-wave theory. We find that, while the excitation spectr...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 24; no. 5; pp. 451 - 459
Main Author 李若言 贺亮 孙青 纪安春 田光善
Format Journal Article
LanguageEnglish
Published 01.05.2015
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/24/5/056701

Cover

More Information
Summary:Spin-wave excitation plays important roles in the investigation of the magnetic phases. In this paper, we study the spin-wave excitation spectra of two-component Bose gases with spin-orbit coupling in a deep square optical lattice using the spin-wave theory. We find that, while the excitation spectrum of the vortex crystal phase is gapless with a linear dispersion in the vicinity of the minimum point, the spectra of the commensurate spiral spin phase and the skyrmion crystal phase are gapped. Significantly, the spin fluctuations strongly destabilize the classical ground state of the skyrmion phase with the appearance of an imaginary part in the eigenfrequencies of spin excitations. Such features of the spin excitation spectra provide further insights into the exotic spin phases.
Bibliography:ultracold Fermi gas, optical lattice, spin-orbit coupling, spin excitation spectrum
Spin-wave excitation plays important roles in the investigation of the magnetic phases. In this paper, we study the spin-wave excitation spectra of two-component Bose gases with spin-orbit coupling in a deep square optical lattice using the spin-wave theory. We find that, while the excitation spectrum of the vortex crystal phase is gapless with a linear dispersion in the vicinity of the minimum point, the spectra of the commensurate spiral spin phase and the skyrmion crystal phase are gapped. Significantly, the spin fluctuations strongly destabilize the classical ground state of the skyrmion phase with the appearance of an imaginary part in the eigenfrequencies of spin excitations. Such features of the spin excitation spectra provide further insights into the exotic spin phases.
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/5/056701