Estimating hair density with XGBoost

Objectives Hair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remain...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of cosmetic science Vol. 47; no. 2; pp. 336 - 342
Main Authors Wang, Yi‐Fan, Hsu, Mei‐Hua, Wang, Max Yue‐Feng, Lin, Jun‐Wei
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.04.2025
Subjects
Online AccessGet full text
ISSN0142-5463
1468-2494
1468-2494
DOI10.1111/ics.13030

Cover

Abstract Objectives Hair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach. Methods The study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot. Results The XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set. Conclusion The XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis. RÉSUMÉ Objectifs l'estimation de la densité des cheveux est. cruciale en dermatologie et en trichologie; cependant, le comptage manuel est. chronophage et sujet à erreurs. Bien que des approches automatisées aient été développées à l'aide du traitement d'image, des réseaux neuronaux et de l'apprentissage profond, la création d'une méthode robuste et largement applicable reste difficile. Cette étude a porté sur l'utilisation de XGBoost pour estimer la densité des cheveux dans le but de développer une approche plus précise et plus polyvalente. Méthodes l'étude a utilisé 895 images du cuir chevelu pour extraire les caractéristiques et a développé un modèle XGBoost pour l'estimation de la densité des cheveux en utilisant 745 images pour former le modèle et tester ses performances sur 150 images afin d'évaluer l'exactitude, le taux d'erreur et le diagramme de dispersion. Résultats le modèle XGBoost a surpassé les méthodes précédentes, avec une exactitude de 89.5% sur la série de formations et de 95.3% sur la série de tests. Cela a dépassé les résultats de Kim et al. (52.4%), Urban et al. (79.6%), et Sacha et al. (88.2%) pour la série de tests. Conclusion l'algorithme XGBoost s'est. avéré efficace pour l'estimation automatique de la densité des cheveux, en obtenant une exactitude de 95.3% sur la série de tests. Cette approche, qui se concentre sur la couverture du cuir chevelu et les caractéristiques d'érosion, peut rationaliser et améliorer l'objectivité de l'analyse clinique des cheveux. Hair density estimation is crucial in dermatology and trichology, where manual counting is laborious and error‐prone. This study explores using XGBoost for more accurate hair density estimation. The XGBoost model was trained on 745 and tested on 150, achieving 89.5% accuracy on training and 95.3% on testing, outperforming previous studies.
AbstractList ObjectivesHair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach.MethodsThe study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot.ResultsThe XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set.ConclusionThe XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis.
Hair density estimation is crucial in dermatology and trichology; however, manual counting is time-consuming and error-prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach.OBJECTIVESHair density estimation is crucial in dermatology and trichology; however, manual counting is time-consuming and error-prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach.The study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot.METHODSThe study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot.The XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set.RESULTSThe XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set.The XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis.CONCLUSIONThe XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis.
Objectives Hair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach. Methods The study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot. Results The XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set. Conclusion The XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis. RÉSUMÉ Objectifs l'estimation de la densité des cheveux est. cruciale en dermatologie et en trichologie; cependant, le comptage manuel est. chronophage et sujet à erreurs. Bien que des approches automatisées aient été développées à l'aide du traitement d'image, des réseaux neuronaux et de l'apprentissage profond, la création d'une méthode robuste et largement applicable reste difficile. Cette étude a porté sur l'utilisation de XGBoost pour estimer la densité des cheveux dans le but de développer une approche plus précise et plus polyvalente. Méthodes l'étude a utilisé 895 images du cuir chevelu pour extraire les caractéristiques et a développé un modèle XGBoost pour l'estimation de la densité des cheveux en utilisant 745 images pour former le modèle et tester ses performances sur 150 images afin d'évaluer l'exactitude, le taux d'erreur et le diagramme de dispersion. Résultats le modèle XGBoost a surpassé les méthodes précédentes, avec une exactitude de 89.5% sur la série de formations et de 95.3% sur la série de tests. Cela a dépassé les résultats de Kim et al. (52.4%), Urban et al. (79.6%), et Sacha et al. (88.2%) pour la série de tests. Conclusion l'algorithme XGBoost s'est. avéré efficace pour l'estimation automatique de la densité des cheveux, en obtenant une exactitude de 95.3% sur la série de tests. Cette approche, qui se concentre sur la couverture du cuir chevelu et les caractéristiques d'érosion, peut rationaliser et améliorer l'objectivité de l'analyse clinique des cheveux. Hair density estimation is crucial in dermatology and trichology, where manual counting is laborious and error‐prone. This study explores using XGBoost for more accurate hair density estimation. The XGBoost model was trained on 745 and tested on 150, achieving 89.5% accuracy on training and 95.3% on testing, outperforming previous studies.
Hair density estimation is crucial in dermatology and trichology; however, manual counting is time-consuming and error-prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach. The study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot. The XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set. The XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis.
Author Lin, Jun‐Wei
Hsu, Mei‐Hua
Wang, Max Yue‐Feng
Wang, Yi‐Fan
Author_xml – sequence: 1
  givenname: Yi‐Fan
  surname: Wang
  fullname: Wang, Yi‐Fan
  organization: Institute of Information and Decision Sciences, National Taipei University of Business
– sequence: 2
  givenname: Mei‐Hua
  orcidid: 0000-0003-2689-9774
  surname: Hsu
  fullname: Hsu, Mei‐Hua
  email: mhsu@mail.cgust.edu.tw
  organization: Chang Gung University of Science and Technology
– sequence: 3
  givenname: Max Yue‐Feng
  surname: Wang
  fullname: Wang, Max Yue‐Feng
  organization: Marketing, the Pennsylvania State University, State College
– sequence: 4
  givenname: Jun‐Wei
  surname: Lin
  fullname: Lin, Jun‐Wei
  organization: Institute of Information and Decision Sciences, National Taipei University of Business
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39551627$$D View this record in MEDLINE/PubMed
BookMark eNp10E1LwzAYB_AgE_eiB7-AFPSgh255b3ucY87BwIMK3kKTpi6ja2bSMvbtjXZ6EMzlgeSXJ3n-Q9Crba0BuERwjMKaGOXHiEACT8AAUZ7GmGa0BwYQURwzykkfDL3fQAhplpIz0CcZY4jjZABu5r4x27wx9Xu0zo2LCl170xyivWnW0dvi3lrfnIPTMq-8vjjWEXh9mL_MHuPV02I5m65iRcLzMVNUagITlYWalDBXktECM5wkOccFKiWkGEHKywzikumEMEbCvpQS03BGRuC267tz9qPVvhFb45WuqrzWtvWCIJzxlNAUBnr9h25s6-rwu6BSmpGUh-YjcHVUrdzqQuxcmNUdxM_8Adx1QDnrvdPlL0FQfGUrQrbiO9tgJ53dm0of_odiOXvubnwC5dJ2UA
Cites_doi 10.1109/PlatCon.2017.7883708
10.1002/lsm.23324
10.1111/ics.12735
10.1145/2939672.2939785
10.1080/2151237X.2007.10129236
ContentType Journal Article
Copyright 2024 Society of Cosmetic Scientists and Societe Francaise de Cosmetologie.
Copyright © 2025 Society of Cosmetic Scientists and the Société Française de Cosmétologie
Copyright_xml – notice: 2024 Society of Cosmetic Scientists and Societe Francaise de Cosmetologie.
– notice: Copyright © 2025 Society of Cosmetic Scientists and the Société Française de Cosmétologie
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U7
8FD
C1K
FR3
K9.
P64
7X8
DOI 10.1111/ics.13030
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Economics
Engineering
EISSN 1468-2494
EndPage 342
ExternalDocumentID 39551627
10_1111_ics_13030
ICS13030
Genre researchArticle
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AHBTC
AHEFC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BGNMA
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
CYRXZ
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EJD
EMK
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LAK
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M4Y
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NU0
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WOW
WQJ
WVDHM
WXI
WXSBR
XG1
YFH
YUY
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7U7
8FD
C1K
FR3
K9.
P64
7X8
ID FETCH-LOGICAL-c3130-5c4be307c94be7f0acb54d25277a62d1fb0421046f902f5e735532d1bbb24b043
IEDL.DBID DR2
ISSN 0142-5463
1468-2494
IngestDate Fri Sep 05 12:00:09 EDT 2025
Tue Oct 07 06:14:07 EDT 2025
Mon Jul 21 05:57:42 EDT 2025
Wed Oct 01 06:36:21 EDT 2025
Wed Apr 02 09:51:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords computer‐aided detection and diagnosis
skin
pattern recognition and classification
machine learning
hair density
Language English
License 2024 Society of Cosmetic Scientists and Societe Francaise de Cosmetologie.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3130-5c4be307c94be7f0acb54d25277a62d1fb0421046f902f5e735532d1bbb24b043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2689-9774
PMID 39551627
PQID 3184938655
PQPubID 1086359
PageCount 7
ParticipantIDs proquest_miscellaneous_3129683480
proquest_journals_3184938655
pubmed_primary_39551627
crossref_primary_10_1111_ics_13030
wiley_primary_10_1111_ics_13030_ICS13030
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2025
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle International journal of cosmetic science
PublicationTitleAlternate Int J Cosmet Sci
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011
2017
2007; 12
2021; 43
2016
2021; 53
e_1_2_7_6_1
Gedraite ES (e_1_2_7_7_1) 2011
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_2_1
References_xml – year: 2016
– volume: 53
  start-page: 171
  issue: 1
  year: 2021
  end-page: 178
  article-title: Combining deep learning with optical coherence tomography imaging to determine scalp hair and follicle counts
  publication-title: Lasers Surg Med
– volume: 12
  start-page: 13
  issue: 2
  year: 2007
  end-page: 21
  article-title: Adaptive thresholding using the integral image
  publication-title: J Graphics Tools
– start-page: 1
  year: 2017
  end-page: 4
– volume: 43
  start-page: 34
  year: 2021
  end-page: 41
  article-title: Development and qualification of a machine learning algorithm for automated hair counting
  publication-title: Int J Cosmet Sci
– start-page: 393
  year: 2011
  end-page: 396
– ident: e_1_2_7_2_1
  doi: 10.1109/PlatCon.2017.7883708
– ident: e_1_2_7_3_1
  doi: 10.1002/lsm.23324
– ident: e_1_2_7_4_1
  doi: 10.1111/ics.12735
– ident: e_1_2_7_5_1
  doi: 10.1145/2939672.2939785
– ident: e_1_2_7_6_1
  doi: 10.1080/2151237X.2007.10129236
– start-page: 393
  volume-title: Proceedings ELMAR‐2011
  year: 2011
  ident: e_1_2_7_7_1
SSID ssj0004983
Score 2.394617
Snippet Objectives Hair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated...
Hair density estimation is crucial in dermatology and trichology; however, manual counting is time-consuming and error-prone. Although automated approaches...
ObjectivesHair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 336
SubjectTerms Accuracy
Algorithms
Automation
Boosting Machine Learning Algorithms
computer‐aided detection and diagnosis
Deep learning
Density
Dermatology
Erosion features
Estimation
Feature extraction
Hair
hair density
Humans
Image processing
Image Processing, Computer-Assisted - methods
Information processing
Machine learning
Neural networks
pattern recognition and classification
Scalp
skin
Test sets
Title Estimating hair density with XGBoost
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fics.13030
https://www.ncbi.nlm.nih.gov/pubmed/39551627
https://www.proquest.com/docview/3184938655
https://www.proquest.com/docview/3129683480
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0142-5463
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1468-2494
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004983
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kBx8HH_VVrRLFg5dIs4-mwZOKtQp6UAs9CGF3s9EipGLSg_56Z_KoVRHEU0J2k8k-ZvebndlvAQ5YZGMhlHADchIK7RlXMzRWIq9jtVCRMjnFxvVNu9cXVwM5mIHjai9MwQ8xWXAjzcjHa1JwpdMpJR-alI4y5mSveyiIANHtJ3WUCAoKTk8Q13-bl6xCFMUzefPrXPQDYH7Fq_mE012Ch-pXiziT56Nxpo_M-zcWx3-WZRkWSyDqnBQ9ZwVmbFKHuWqfclqHhSmqwjrMXpdO-FU4OMdhgYBu8ug8qeGrE1EQfPbm0JquM7g4HY3SbA363fP7s55bHrbgGo6iXWmEtqjwJsCrH7eU0VJETDLfV20WebFG9SaHcBy0WCytj0CF43OtNROYxtehlowSuwmO5Wi0Kekb1oqFjxA0QtApuRI6io2QQQP2q2oPXwpOjbCyRbCAYV4TDWhWDRKWapWGOACJgE4plQ3YmySjQpCXQyV2NKY8LGh3uOjgJzaKhpxI4QH5BZnfgMO8OX4XH16e3eU3W3_Pug3zjE4HzuN6mlDLXsd2ByFLpnfzvvkBTAfilA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hkAY8wNYN6PgKEw97SdXa56SR9gIVUAblYQOpL1NkO86GkFJE0wf467nLRymgSYinRLETxx9n_853_h3AvkhciqjRj9hIiKZjfSNIWUk6XWdQJ9oWFBuDi6B_hT-HajgHP-qzMCU_xHTDjSWjmK9ZwHlDekbKr-2YYxlLUtgXMCA9hSHRryfyKIxKEs4OMtt_ICteIfbjmb76fDV6BTGfI9ZiyTlehT_1z5aeJjetSW5a9uEFj-N7a_MRVios6h2Ug-cTzLmsAYv1UeVxA5Zn2Aob8GFQ2eE_w_4RzQyMdbO_3j99fecl7Aef33u8resNTw5Ho3H-Ba6Ojy57fb-Kt-BbSUX7yqJxJPM2omuYtrU1ChOhRBjqQCSd1JCEs004jdoiVS4krCLpuTFGIKXJNZjPRpnbAM9J0tu0Cq1opxgSCk0Idyqp0SSpRRU14Vvd7vFtSasR1-oIVTAuWqIJW3WPxJVkjWOagzDiQKWqCXvTZJIJNnTozI0mnEdEQVdilz6xXvbktBQZsWlQhE34XvTH_4uPT3u_i5uvb8-6C4v9y8F5fH56cbYJS4KDBRduPlswn99N3DYhmNzsFAP1EZh45rU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1VILEcWMpW1oA4cEnVeGkaiQu0lLIKsUi9oMhboEJKEU0P8PWMs5RNSIhTotiJY4_HfuMZPwPsEm0ixgRzA-skZNJTriRorGivYSQTWqiUYuPist65Y6dd3i3BfrEXJuOHGC24Wc1Ix2ur4OZZR5-0vKcG9ixjigb7OONBwwb0ta4_yKNYkJFwesyy_ddpzitk43hGr36djX5AzK-INZ1y2rNwX_xsFmnyVB0msqrevvE4_rc2czCTY1HnIOs881AycRkmi63KgzJMf2IrLMPERe6HX4DdIxwZLNaNH5xH0XtxtI2DT14du6zrdI8P-_1Bsgh37aPbZsfNz1twFcWiXa6YNKjzKsCrH9WEkpxpwonvizrRXiRRw61POApqJOLGR6xC8bmUkjBMo0swFvdjswKOoWi3Ce4rUouYjyhUI-7kVDCpI4XCqsBO0e7hc0arERbmCFYwTFuiAuuFRMJcswYhjkEssAeV8gpsj5JRJ6yjQ8SmP7R5SFBvUNbATyxnkhyVQgPrGiR-BfZSefxefHjSvElvVv-edQsmrlrt8Pzk8mwNpog9KziN8lmHseRlaDYQwCRyM-2n72Hg5jk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+hair+density+with+XGBoost&rft.jtitle=International+journal+of+cosmetic+science&rft.au=Wang%2C+Yi-Fan&rft.au=Hsu%2C+Mei-Hua&rft.au=Wang%2C+Max+Yue-Feng&rft.au=Lin%2C+Jun-Wei&rft.date=2025-04-01&rft.eissn=1468-2494&rft.volume=47&rft.issue=2&rft.spage=336&rft_id=info:doi/10.1111%2Fics.13030&rft_id=info%3Apmid%2F39551627&rft.externalDocID=39551627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-5463&client=summon