Estimating hair density with XGBoost
Objectives Hair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remain...
Saved in:
| Published in | International journal of cosmetic science Vol. 47; no. 2; pp. 336 - 342 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0142-5463 1468-2494 1468-2494 |
| DOI | 10.1111/ics.13030 |
Cover
| Abstract | Objectives
Hair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach.
Methods
The study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot.
Results
The XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set.
Conclusion
The XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis.
RÉSUMÉ
Objectifs
l'estimation de la densité des cheveux est. cruciale en dermatologie et en trichologie; cependant, le comptage manuel est. chronophage et sujet à erreurs. Bien que des approches automatisées aient été développées à l'aide du traitement d'image, des réseaux neuronaux et de l'apprentissage profond, la création d'une méthode robuste et largement applicable reste difficile. Cette étude a porté sur l'utilisation de XGBoost pour estimer la densité des cheveux dans le but de développer une approche plus précise et plus polyvalente.
Méthodes
l'étude a utilisé 895 images du cuir chevelu pour extraire les caractéristiques et a développé un modèle XGBoost pour l'estimation de la densité des cheveux en utilisant 745 images pour former le modèle et tester ses performances sur 150 images afin d'évaluer l'exactitude, le taux d'erreur et le diagramme de dispersion.
Résultats
le modèle XGBoost a surpassé les méthodes précédentes, avec une exactitude de 89.5% sur la série de formations et de 95.3% sur la série de tests. Cela a dépassé les résultats de Kim et al. (52.4%), Urban et al. (79.6%), et Sacha et al. (88.2%) pour la série de tests.
Conclusion
l'algorithme XGBoost s'est. avéré efficace pour l'estimation automatique de la densité des cheveux, en obtenant une exactitude de 95.3% sur la série de tests. Cette approche, qui se concentre sur la couverture du cuir chevelu et les caractéristiques d'érosion, peut rationaliser et améliorer l'objectivité de l'analyse clinique des cheveux.
Hair density estimation is crucial in dermatology and trichology, where manual counting is laborious and error‐prone. This study explores using XGBoost for more accurate hair density estimation. The XGBoost model was trained on 745 and tested on 150, achieving 89.5% accuracy on training and 95.3% on testing, outperforming previous studies. |
|---|---|
| AbstractList | ObjectivesHair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach.MethodsThe study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot.ResultsThe XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set.ConclusionThe XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis. Hair density estimation is crucial in dermatology and trichology; however, manual counting is time-consuming and error-prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach.OBJECTIVESHair density estimation is crucial in dermatology and trichology; however, manual counting is time-consuming and error-prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach.The study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot.METHODSThe study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot.The XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set.RESULTSThe XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set.The XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis.CONCLUSIONThe XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis. Objectives Hair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach. Methods The study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot. Results The XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set. Conclusion The XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis. RÉSUMÉ Objectifs l'estimation de la densité des cheveux est. cruciale en dermatologie et en trichologie; cependant, le comptage manuel est. chronophage et sujet à erreurs. Bien que des approches automatisées aient été développées à l'aide du traitement d'image, des réseaux neuronaux et de l'apprentissage profond, la création d'une méthode robuste et largement applicable reste difficile. Cette étude a porté sur l'utilisation de XGBoost pour estimer la densité des cheveux dans le but de développer une approche plus précise et plus polyvalente. Méthodes l'étude a utilisé 895 images du cuir chevelu pour extraire les caractéristiques et a développé un modèle XGBoost pour l'estimation de la densité des cheveux en utilisant 745 images pour former le modèle et tester ses performances sur 150 images afin d'évaluer l'exactitude, le taux d'erreur et le diagramme de dispersion. Résultats le modèle XGBoost a surpassé les méthodes précédentes, avec une exactitude de 89.5% sur la série de formations et de 95.3% sur la série de tests. Cela a dépassé les résultats de Kim et al. (52.4%), Urban et al. (79.6%), et Sacha et al. (88.2%) pour la série de tests. Conclusion l'algorithme XGBoost s'est. avéré efficace pour l'estimation automatique de la densité des cheveux, en obtenant une exactitude de 95.3% sur la série de tests. Cette approche, qui se concentre sur la couverture du cuir chevelu et les caractéristiques d'érosion, peut rationaliser et améliorer l'objectivité de l'analyse clinique des cheveux. Hair density estimation is crucial in dermatology and trichology, where manual counting is laborious and error‐prone. This study explores using XGBoost for more accurate hair density estimation. The XGBoost model was trained on 745 and tested on 150, achieving 89.5% accuracy on training and 95.3% on testing, outperforming previous studies. Hair density estimation is crucial in dermatology and trichology; however, manual counting is time-consuming and error-prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach. The study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot. The XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set. The XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis. |
| Author | Lin, Jun‐Wei Hsu, Mei‐Hua Wang, Max Yue‐Feng Wang, Yi‐Fan |
| Author_xml | – sequence: 1 givenname: Yi‐Fan surname: Wang fullname: Wang, Yi‐Fan organization: Institute of Information and Decision Sciences, National Taipei University of Business – sequence: 2 givenname: Mei‐Hua orcidid: 0000-0003-2689-9774 surname: Hsu fullname: Hsu, Mei‐Hua email: mhsu@mail.cgust.edu.tw organization: Chang Gung University of Science and Technology – sequence: 3 givenname: Max Yue‐Feng surname: Wang fullname: Wang, Max Yue‐Feng organization: Marketing, the Pennsylvania State University, State College – sequence: 4 givenname: Jun‐Wei surname: Lin fullname: Lin, Jun‐Wei organization: Institute of Information and Decision Sciences, National Taipei University of Business |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39551627$$D View this record in MEDLINE/PubMed |
| BookMark | eNp10E1LwzAYB_AgE_eiB7-AFPSgh255b3ucY87BwIMK3kKTpi6ja2bSMvbtjXZ6EMzlgeSXJ3n-Q9Crba0BuERwjMKaGOXHiEACT8AAUZ7GmGa0BwYQURwzykkfDL3fQAhplpIz0CcZY4jjZABu5r4x27wx9Xu0zo2LCl170xyivWnW0dvi3lrfnIPTMq-8vjjWEXh9mL_MHuPV02I5m65iRcLzMVNUagITlYWalDBXktECM5wkOccFKiWkGEHKywzikumEMEbCvpQS03BGRuC267tz9qPVvhFb45WuqrzWtvWCIJzxlNAUBnr9h25s6-rwu6BSmpGUh-YjcHVUrdzqQuxcmNUdxM_8Adx1QDnrvdPlL0FQfGUrQrbiO9tgJ53dm0of_odiOXvubnwC5dJ2UA |
| Cites_doi | 10.1109/PlatCon.2017.7883708 10.1002/lsm.23324 10.1111/ics.12735 10.1145/2939672.2939785 10.1080/2151237X.2007.10129236 |
| ContentType | Journal Article |
| Copyright | 2024 Society of Cosmetic Scientists and Societe Francaise de Cosmetologie. Copyright © 2025 Society of Cosmetic Scientists and the Société Française de Cosmétologie |
| Copyright_xml | – notice: 2024 Society of Cosmetic Scientists and Societe Francaise de Cosmetologie. – notice: Copyright © 2025 Society of Cosmetic Scientists and the Société Française de Cosmétologie |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QR 7U7 8FD C1K FR3 K9. P64 7X8 |
| DOI | 10.1111/ics.13030 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | Technology Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Economics Engineering |
| EISSN | 1468-2494 |
| EndPage | 342 |
| ExternalDocumentID | 39551627 10_1111_ics_13030 ICS13030 |
| Genre | researchArticle Journal Article |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFEBI AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AHEFC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BGNMA BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 CYRXZ D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EJD EMK EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LAK LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M4Y MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NU0 O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 V8K W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WVDHM WXI WXSBR XG1 YFH YUY ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QR 7U7 8FD C1K FR3 K9. P64 7X8 |
| ID | FETCH-LOGICAL-c3130-5c4be307c94be7f0acb54d25277a62d1fb0421046f902f5e735532d1bbb24b043 |
| IEDL.DBID | DR2 |
| ISSN | 0142-5463 1468-2494 |
| IngestDate | Fri Sep 05 12:00:09 EDT 2025 Tue Oct 07 06:14:07 EDT 2025 Mon Jul 21 05:57:42 EDT 2025 Wed Oct 01 06:36:21 EDT 2025 Wed Apr 02 09:51:26 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | computer‐aided detection and diagnosis skin pattern recognition and classification machine learning hair density |
| Language | English |
| License | 2024 Society of Cosmetic Scientists and Societe Francaise de Cosmetologie. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3130-5c4be307c94be7f0acb54d25277a62d1fb0421046f902f5e735532d1bbb24b043 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2689-9774 |
| PMID | 39551627 |
| PQID | 3184938655 |
| PQPubID | 1086359 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_3129683480 proquest_journals_3184938655 pubmed_primary_39551627 crossref_primary_10_1111_ics_13030 wiley_primary_10_1111_ics_13030_ICS13030 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2025 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | International journal of cosmetic science |
| PublicationTitleAlternate | Int J Cosmet Sci |
| PublicationYear | 2025 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2011 2017 2007; 12 2021; 43 2016 2021; 53 e_1_2_7_6_1 Gedraite ES (e_1_2_7_7_1) 2011 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_2_1 |
| References_xml | – year: 2016 – volume: 53 start-page: 171 issue: 1 year: 2021 end-page: 178 article-title: Combining deep learning with optical coherence tomography imaging to determine scalp hair and follicle counts publication-title: Lasers Surg Med – volume: 12 start-page: 13 issue: 2 year: 2007 end-page: 21 article-title: Adaptive thresholding using the integral image publication-title: J Graphics Tools – start-page: 1 year: 2017 end-page: 4 – volume: 43 start-page: 34 year: 2021 end-page: 41 article-title: Development and qualification of a machine learning algorithm for automated hair counting publication-title: Int J Cosmet Sci – start-page: 393 year: 2011 end-page: 396 – ident: e_1_2_7_2_1 doi: 10.1109/PlatCon.2017.7883708 – ident: e_1_2_7_3_1 doi: 10.1002/lsm.23324 – ident: e_1_2_7_4_1 doi: 10.1111/ics.12735 – ident: e_1_2_7_5_1 doi: 10.1145/2939672.2939785 – ident: e_1_2_7_6_1 doi: 10.1080/2151237X.2007.10129236 – start-page: 393 volume-title: Proceedings ELMAR‐2011 year: 2011 ident: e_1_2_7_7_1 |
| SSID | ssj0004983 |
| Score | 2.394617 |
| Snippet | Objectives
Hair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated... Hair density estimation is crucial in dermatology and trichology; however, manual counting is time-consuming and error-prone. Although automated approaches... ObjectivesHair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 336 |
| SubjectTerms | Accuracy Algorithms Automation Boosting Machine Learning Algorithms computer‐aided detection and diagnosis Deep learning Density Dermatology Erosion features Estimation Feature extraction Hair hair density Humans Image processing Image Processing, Computer-Assisted - methods Information processing Machine learning Neural networks pattern recognition and classification Scalp skin Test sets |
| Title | Estimating hair density with XGBoost |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fics.13030 https://www.ncbi.nlm.nih.gov/pubmed/39551627 https://www.proquest.com/docview/3184938655 https://www.proquest.com/docview/3129683480 |
| Volume | 47 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0142-5463 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1468-2494 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004983 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB6kBx8HH_VVrRLFg5dIs4-mwZOKtQp6UAs9CGF3s9EipGLSg_56Z_KoVRHEU0J2k8k-ZvebndlvAQ5YZGMhlHADchIK7RlXMzRWIq9jtVCRMjnFxvVNu9cXVwM5mIHjai9MwQ8xWXAjzcjHa1JwpdMpJR-alI4y5mSveyiIANHtJ3WUCAoKTk8Q13-bl6xCFMUzefPrXPQDYH7Fq_mE012Ch-pXiziT56Nxpo_M-zcWx3-WZRkWSyDqnBQ9ZwVmbFKHuWqfclqHhSmqwjrMXpdO-FU4OMdhgYBu8ug8qeGrE1EQfPbm0JquM7g4HY3SbA363fP7s55bHrbgGo6iXWmEtqjwJsCrH7eU0VJETDLfV20WebFG9SaHcBy0WCytj0CF43OtNROYxtehlowSuwmO5Wi0Kekb1oqFjxA0QtApuRI6io2QQQP2q2oPXwpOjbCyRbCAYV4TDWhWDRKWapWGOACJgE4plQ3YmySjQpCXQyV2NKY8LGh3uOjgJzaKhpxI4QH5BZnfgMO8OX4XH16e3eU3W3_Pug3zjE4HzuN6mlDLXsd2ByFLpnfzvvkBTAfilA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hkAY8wNYN6PgKEw97SdXa56SR9gIVUAblYQOpL1NkO86GkFJE0wf467nLRymgSYinRLETxx9n_853_h3AvkhciqjRj9hIiKZjfSNIWUk6XWdQJ9oWFBuDi6B_hT-HajgHP-qzMCU_xHTDjSWjmK9ZwHlDekbKr-2YYxlLUtgXMCA9hSHRryfyKIxKEs4OMtt_ICteIfbjmb76fDV6BTGfI9ZiyTlehT_1z5aeJjetSW5a9uEFj-N7a_MRVios6h2Ug-cTzLmsAYv1UeVxA5Zn2Aob8GFQ2eE_w_4RzQyMdbO_3j99fecl7Aef33u8resNTw5Ho3H-Ba6Ojy57fb-Kt-BbSUX7yqJxJPM2omuYtrU1ChOhRBjqQCSd1JCEs004jdoiVS4krCLpuTFGIKXJNZjPRpnbAM9J0tu0Cq1opxgSCk0Idyqp0SSpRRU14Vvd7vFtSasR1-oIVTAuWqIJW3WPxJVkjWOagzDiQKWqCXvTZJIJNnTozI0mnEdEQVdilz6xXvbktBQZsWlQhE34XvTH_4uPT3u_i5uvb8-6C4v9y8F5fH56cbYJS4KDBRduPlswn99N3DYhmNzsFAP1EZh45rU |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1VILEcWMpW1oA4cEnVeGkaiQu0lLIKsUi9oMhboEJKEU0P8PWMs5RNSIhTotiJY4_HfuMZPwPsEm0ixgRzA-skZNJTriRorGivYSQTWqiUYuPist65Y6dd3i3BfrEXJuOHGC24Wc1Ix2ur4OZZR5-0vKcG9ixjigb7OONBwwb0ta4_yKNYkJFwesyy_ddpzitk43hGr36djX5AzK-INZ1y2rNwX_xsFmnyVB0msqrevvE4_rc2czCTY1HnIOs881AycRkmi63KgzJMf2IrLMPERe6HX4DdIxwZLNaNH5xH0XtxtI2DT14du6zrdI8P-_1Bsgh37aPbZsfNz1twFcWiXa6YNKjzKsCrH9WEkpxpwonvizrRXiRRw61POApqJOLGR6xC8bmUkjBMo0swFvdjswKOoWi3Ce4rUouYjyhUI-7kVDCpI4XCqsBO0e7hc0arERbmCFYwTFuiAuuFRMJcswYhjkEssAeV8gpsj5JRJ6yjQ8SmP7R5SFBvUNbATyxnkhyVQgPrGiR-BfZSefxefHjSvElvVv-edQsmrlrt8Pzk8mwNpog9KziN8lmHseRlaDYQwCRyM-2n72Hg5jk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+hair+density+with+XGBoost&rft.jtitle=International+journal+of+cosmetic+science&rft.au=Wang%2C+Yi-Fan&rft.au=Hsu%2C+Mei-Hua&rft.au=Wang%2C+Max+Yue-Feng&rft.au=Lin%2C+Jun-Wei&rft.date=2025-04-01&rft.eissn=1468-2494&rft.volume=47&rft.issue=2&rft.spage=336&rft_id=info:doi/10.1111%2Fics.13030&rft_id=info%3Apmid%2F39551627&rft.externalDocID=39551627 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-5463&client=summon |