Estimating hair density with XGBoost
Objectives Hair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remain...
Saved in:
| Published in | International journal of cosmetic science Vol. 47; no. 2; pp. 336 - 342 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Wiley Subscription Services, Inc
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0142-5463 1468-2494 1468-2494 |
| DOI | 10.1111/ics.13030 |
Cover
| Summary: | Objectives
Hair density estimation is crucial in dermatology and trichology; however, manual counting is time‐consuming and error‐prone. Although automated approaches have been developed using image processing, neural networks, and deep learning, creating a robust and widely applicable method remains challenging. This study explored the use of XGBoost to estimate hair density with the aim of developing a more accurate and versatile approach.
Methods
The study utilized 895 scalp images to extract features and developed an XGBoost model for hair density estimation using 745 images to train the model and testing its performance on 150 images to evaluate the accuracy, error rate, and scatter plot.
Results
The XGBoost model outperformed previous methods, achieving 89.5% accuracy on the training set and 95.3% accuracy on the test set. This surpassed the results of Kim et al. (52.4%), Urban et al. (79.6%), and Sacha et al. (88.2%) for the test set.
Conclusion
The XGBoost algorithm proved to be effective for automated hair density estimation, achieving an accuracy of 95.3% on the test set. This approach, which focusses on scalp coverage and erosion features, can streamline and improve the objectivity of clinical hair analysis.
RÉSUMÉ
Objectifs
l'estimation de la densité des cheveux est. cruciale en dermatologie et en trichologie; cependant, le comptage manuel est. chronophage et sujet à erreurs. Bien que des approches automatisées aient été développées à l'aide du traitement d'image, des réseaux neuronaux et de l'apprentissage profond, la création d'une méthode robuste et largement applicable reste difficile. Cette étude a porté sur l'utilisation de XGBoost pour estimer la densité des cheveux dans le but de développer une approche plus précise et plus polyvalente.
Méthodes
l'étude a utilisé 895 images du cuir chevelu pour extraire les caractéristiques et a développé un modèle XGBoost pour l'estimation de la densité des cheveux en utilisant 745 images pour former le modèle et tester ses performances sur 150 images afin d'évaluer l'exactitude, le taux d'erreur et le diagramme de dispersion.
Résultats
le modèle XGBoost a surpassé les méthodes précédentes, avec une exactitude de 89.5% sur la série de formations et de 95.3% sur la série de tests. Cela a dépassé les résultats de Kim et al. (52.4%), Urban et al. (79.6%), et Sacha et al. (88.2%) pour la série de tests.
Conclusion
l'algorithme XGBoost s'est. avéré efficace pour l'estimation automatique de la densité des cheveux, en obtenant une exactitude de 95.3% sur la série de tests. Cette approche, qui se concentre sur la couverture du cuir chevelu et les caractéristiques d'érosion, peut rationaliser et améliorer l'objectivité de l'analyse clinique des cheveux.
Hair density estimation is crucial in dermatology and trichology, where manual counting is laborious and error‐prone. This study explores using XGBoost for more accurate hair density estimation. The XGBoost model was trained on 745 and tested on 150, achieving 89.5% accuracy on training and 95.3% on testing, outperforming previous studies. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 0142-5463 1468-2494 1468-2494 |
| DOI: | 10.1111/ics.13030 |