Dependence of InGaN solar cell performance on polarization-induced electric field and carrier lifetime

The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p-i-n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polariza- tion in the i-region could be totally shielded when the Mg-induced...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 9; pp. 671 - 675
Main Author 杨静 赵德刚 江德生 刘宗顺 陈平 李亮 吴亮亮 乐伶聪 李晓静 何晓光 王辉 朱建军 张书明 张宝顺 杨辉
Format Journal Article
LanguageEnglish
Published 01.09.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/9/098801

Cover

More Information
Summary:The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p-i-n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polariza- tion in the i-region could be totally shielded when the Mg-induced net acceptor doping concentration is sufficiently high. The polarization-induced potential barriers are reduced and the short circuit current density is remarkably increased from 0.21 mA/cm2 to 0.95 mA/cm2 by elevating the Mg doping concentration. The carrier lifetime determined by defect density of i-InGaN also plays an important role in determining the photovoltaic properties of solar cell. The short circuit current density severely degrades, and the performance of InGaN solar cell becomes more sensitive to the polarization when carrier lifetime is lower than the transit time. This study demonstrates that the crystal quality of InGaN absorption layer is one of the most important challenges in realizing high efficiency InGaN solar cells.
Bibliography:nitride materials, solar cell, polarization
The effects of Mg-induced net acceptor doping concentration and carrier lifetime on the performance of a p-i-n InGaN solar cell are investigated. It is found that the electric field induced by spontaneous and piezoelectric polariza- tion in the i-region could be totally shielded when the Mg-induced net acceptor doping concentration is sufficiently high. The polarization-induced potential barriers are reduced and the short circuit current density is remarkably increased from 0.21 mA/cm2 to 0.95 mA/cm2 by elevating the Mg doping concentration. The carrier lifetime determined by defect density of i-InGaN also plays an important role in determining the photovoltaic properties of solar cell. The short circuit current density severely degrades, and the performance of InGaN solar cell becomes more sensitive to the polarization when carrier lifetime is lower than the transit time. This study demonstrates that the crystal quality of InGaN absorption layer is one of the most important challenges in realizing high efficiency InGaN solar cells.
Yang Jing, Zhao De-Gang, Jiang De-Sheng, Liu Zong-Shun, Chen Ping, Li Liang, Wu Liang-Liang, Le Ling-Cong Li Xiao-Jing, He Xiao-Guang, Wang Hui, Zhu Jian-Jun, Zhang Shu-Ming, Zhang Bao-Shun, and Yang Hui( a) state Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China b) Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/9/098801