Electronic and structural properties of N-vacancy in AlN nanowires: A first-principles study

The stability and electronic structures of AIN nanowires with and without N-vacancy are investigated using firstprinciples calculations. We find that there is an inverse correlation between formation energy and diameter in ideal AlN nanowires. After calculating the formation energies of N-vacancy at...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 8; pp. 398 - 401
Main Author 乔志娟 陈光德 耶红刚 伍叶龙 牛海波 竹有章
Format Journal Article
LanguageEnglish
Published 01.08.2012
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/21/8/087101

Cover

More Information
Summary:The stability and electronic structures of AIN nanowires with and without N-vacancy are investigated using firstprinciples calculations. We find that there is an inverse correlation between formation energy and diameter in ideal AlN nanowires. After calculating the formation energies of N-vacancy at different sites in AlN nanowires with different diameters, we find that the N-vacancy prefers to stay at the surface of the nanowires and it is easier to fabricate them under Al-rich conditions. Through studying the electronic properties of AlN nanowires with N-vacancies, we further find that there are two isolated bands in the deep part of the band gap, one of them is fully occupied and the other is half occupied. The charge density indicates that the half-fully occupied band arises from the Al at the surface, and this atom becomes an active centre.
Bibliography:AlN nanowires, vacancy, first-principles
11-5639/O4
The stability and electronic structures of AIN nanowires with and without N-vacancy are investigated using firstprinciples calculations. We find that there is an inverse correlation between formation energy and diameter in ideal AlN nanowires. After calculating the formation energies of N-vacancy at different sites in AlN nanowires with different diameters, we find that the N-vacancy prefers to stay at the surface of the nanowires and it is easier to fabricate them under Al-rich conditions. Through studying the electronic properties of AlN nanowires with N-vacancies, we further find that there are two isolated bands in the deep part of the band gap, one of them is fully occupied and the other is half occupied. The charge density indicates that the half-fully occupied band arises from the Al at the surface, and this atom becomes an active centre.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/21/8/087101