A theoretical and experimental study on all-normal-dispersion Yb-doped mode-locked fiber lasers
We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a mod...
Saved in:
| Published in | Chinese physics B Vol. 22; no. 4; pp. 268 - 273 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.04.2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 1741-4199 |
| DOI | 10.1088/1674-1056/22/4/044204 |
Cover
| Summary: | We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained. |
|---|---|
| Bibliography: | all-normal-dispersion, nonlinear polarization rotation, mode-locked, Yb-doped fiber laser Chi Jun-Jie, Li Ping-Xue, Yang Chun, Zhao Zi-Qiang, Li Yao, Wang Xiong-Fei, Zhong Guo-Shun, Zhao Hong, Jiang Dong-Sheng(a) Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China b) science and Technology on Solid-State Laser Laboratory, Beijing 100015, China We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1674-1056 2058-3834 1741-4199 |
| DOI: | 10.1088/1674-1056/22/4/044204 |