Proposal of the readout electronics for the WCDA in the LHAASO experiment
The LHAASO (Large High Altitude Air Shower Observatory) experiment is proposed for a very high energy gamma ray source survey, in which the WCDA (Water Cherellkov Detector Array) is one of the major coinponents. In the WCDA, a total of 3600 PMTs are placed under water in four ponds, each with a size...
Saved in:
| Published in | Chinese physics C Vol. 38; no. 1; pp. 56 - 60 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1137 0254-3052 |
| DOI | 10.1088/1674-1137/38/1/016101 |
Cover
| Summary: | The LHAASO (Large High Altitude Air Shower Observatory) experiment is proposed for a very high energy gamma ray source survey, in which the WCDA (Water Cherellkov Detector Array) is one of the major coinponents. In the WCDA, a total of 3600 PMTs are placed under water in four ponds, each with a size of 150m×150 m. Precise time and cimrge measurement is required for the PMT signals, over a large signal amplitude range from a single P.E. (photo electron) to 4000 P.E. To fulfill the high requirement of a signal measurement in so many front end nodes scattered in a large area, special techniques are developed, such as multiple gain readout, hybrid transmission of clocks, commands and data, precise clock phase alignment and new trigger electronics. We present the readout electronics architecture for the WCDA and several prototype modules, which are now being testedin the laboratory. |
|---|---|
| Bibliography: | The LHAASO (Large High Altitude Air Shower Observatory) experiment is proposed for a very high energy gamma ray source survey, in which the WCDA (Water Cherellkov Detector Array) is one of the major coinponents. In the WCDA, a total of 3600 PMTs are placed under water in four ponds, each with a size of 150m×150 m. Precise time and cimrge measurement is required for the PMT signals, over a large signal amplitude range from a single P.E. (photo electron) to 4000 P.E. To fulfill the high requirement of a signal measurement in so many front end nodes scattered in a large area, special techniques are developed, such as multiple gain readout, hybrid transmission of clocks, commands and data, precise clock phase alignment and new trigger electronics. We present the readout electronics architecture for the WCDA and several prototype modules, which are now being testedin the laboratory. 11-5641/O4 ZHAO Lei LIU Shu-Bin AN Qi1 State Key Laboratory of Particle Detection and Electronics, University of Science and Technology of China, Hefei 230026, China; 2 Departnmnt of Modern Physics, University of Science and Technology of China, Hefei 230026, China WCDA, LHAASO, readout electronics, PMT ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1674-1137 0254-3052 |
| DOI: | 10.1088/1674-1137/38/1/016101 |