The effects of substrate temperature on ZnO-based resistive random access memory devices
Ag/ZnO/Zn/Pt structure resistive switching devices are prepared by radio frequency magnetron sputtering. The ZnO thin films are grown at room temperature and 400 ℃ substrate temperature, respectively. By comparing the data, we find that the latter device displayed better stability in the repetitive...
        Saved in:
      
    
          | Published in | Chinese physics B Vol. 21; no. 6; pp. 356 - 359 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
          
        01.06.2012
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1674-1056 2058-3834 1741-4199  | 
| DOI | 10.1088/1674-1056/21/6/065201 | 
Cover
| Summary: | Ag/ZnO/Zn/Pt structure resistive switching devices are prepared by radio frequency magnetron sputtering. The ZnO thin films are grown at room temperature and 400 ℃ substrate temperature, respectively. By comparing the data, we find that the latter device displayed better stability in the repetitive switching cycle test, and the resistance ratio between a high resistance state and a low resistance state is correspondingly increased. After 104-s storage time measurement, this device exhibits a good retention property. Moreover, the operation voltages are very low: -0.3 V/-0.7 V (OFF state) and 0.3 V (ON state). A high-voltage forming process in the initial state is not required, and a multistep reset process is demonstrated. | 
|---|---|
| Bibliography: | Ag/ZnO/Zn/Pt structure resistive switching devices are prepared by radio frequency magnetron sputtering. The ZnO thin films are grown at room temperature and 400 ℃ substrate temperature, respectively. By comparing the data, we find that the latter device displayed better stability in the repetitive switching cycle test, and the resistance ratio between a high resistance state and a low resistance state is correspondingly increased. After 104-s storage time measurement, this device exhibits a good retention property. Moreover, the operation voltages are very low: -0.3 V/-0.7 V (OFF state) and 0.3 V (ON state). A high-voltage forming process in the initial state is not required, and a multistep reset process is demonstrated. Zhao Jian-Wei, Liu Feng-Juan, Huang Hai-Qin, Hu Zuo-Fu, and Zhang Xi-Qing( Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Opto-electronic Technology, Beijing Jiaotong University, Beijing 100044, China) ZnO, resistive switching devices, magnetron sputtering 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
| ISSN: | 1674-1056 2058-3834 1741-4199  | 
| DOI: | 10.1088/1674-1056/21/6/065201 |