Structural and optical investigation of nonpolar a-plane GaN grown by metal-organic chemical vapour deposition on r-plane sapphire by neutron irradiation

Nonpolar (1150) a-plane GaN films are grown by metal-organic chemical vapour deposition (MOCVD) on r-plane (1102) sapphire. The samples are irradiated with neutrons under a dose of 1× 1015 cm-2. The surface morphology, the crystal defects and the optical properties of the samples before and after ir...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 2; pp. 531 - 535
Main Author 张金风 谷文萍 郝跃 张进成 周小伟 林志宇 毛维
Format Journal Article
LanguageEnglish
Published 01.02.2012
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/21/2/027802

Cover

More Information
Summary:Nonpolar (1150) a-plane GaN films are grown by metal-organic chemical vapour deposition (MOCVD) on r-plane (1102) sapphire. The samples are irradiated with neutrons under a dose of 1× 1015 cm-2. The surface morphology, the crystal defects and the optical properties of the samples before and after irradiation are analysed using atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD) and photoluminescence (PL). The AFM result shows deteriorated sample surface after the irradiation. Careful fitting of the XRD rocking curve is carried out to obtain the Lorentzian weight fraction. Broadening due to Lorentzian type is more obvious in the as-grown sample compared with that of the irradiated sample, indicating that more point defects appear in the irradiated sample. The variations of line width and intensity of the PL band edge emission peak are consistent with the XRD results. The activation energy decreases from 82.5 meV to 29.9 meV after irradiation by neutron.
Bibliography:Nonpolar (1150) a-plane GaN films are grown by metal-organic chemical vapour deposition (MOCVD) on r-plane (1102) sapphire. The samples are irradiated with neutrons under a dose of 1× 1015 cm-2. The surface morphology, the crystal defects and the optical properties of the samples before and after irradiation are analysed using atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD) and photoluminescence (PL). The AFM result shows deteriorated sample surface after the irradiation. Careful fitting of the XRD rocking curve is carried out to obtain the Lorentzian weight fraction. Broadening due to Lorentzian type is more obvious in the as-grown sample compared with that of the irradiated sample, indicating that more point defects appear in the irradiated sample. The variations of line width and intensity of the PL band edge emission peak are consistent with the XRD results. The activation energy decreases from 82.5 meV to 29.9 meV after irradiation by neutron.
GaN, neutron, nonpolar, photoluminescence
11-5639/O4
Xu Sheng-Rui, Zhang Jin-Feng, Gu Wen-Ping, Hao Yue, Zhang Jin-Cheng, Zhou Xiao-Wei, Lin Zhi-Yu, Mao Wei National Key Laboratory of Fundamental Science for Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi'an 710071, China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/21/2/027802