The synthesis and exchange bias effect of monodisperse NiO nanocrystals

Monodisperse NiO nanocrystals with an average particle size of 3 -h 0.4 nm are successfully synthesized by the thermal decomposition of Ni-oleylamine complex in an organic solvent under a continuous 02 flux. The crystalline structure and the morphology of the product are investigated by X-ray diffra...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 7; pp. 536 - 540
Main Author 段寒凝 袁松柳 郑先锋 田召明
Format Journal Article
LanguageEnglish
Published 01.07.2012
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/21/7/078101

Cover

More Information
Summary:Monodisperse NiO nanocrystals with an average particle size of 3 -h 0.4 nm are successfully synthesized by the thermal decomposition of Ni-oleylamine complex in an organic solvent under a continuous 02 flux. The crystalline structure and the morphology of the product are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Magnetization and alternating-current (ac) susceptibility measurements indicate that the structure of the particles can be considered as consisting of an antiferromagnetieally ordered core and a spin- glass-like surface shell. In addition, both the exchange bias field and the vertical magnetization shift can be observed in this system at 10 K after field cooling. This observed exchange bias effect is explained in terms of the exchange interaction between the antiferromagnetie core and the spin-glass-like shell.
Bibliography:Duan Han-Ning, Yuan Song-Liu, Zheng Xian-Feng and Tian Zhao-Ming School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
nanocrystalline materials, antiferromagnetics, spin glass, exchange bias
11-5639/O4
Monodisperse NiO nanocrystals with an average particle size of 3 -h 0.4 nm are successfully synthesized by the thermal decomposition of Ni-oleylamine complex in an organic solvent under a continuous 02 flux. The crystalline structure and the morphology of the product are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and transmission electron microscopy. Magnetization and alternating-current (ac) susceptibility measurements indicate that the structure of the particles can be considered as consisting of an antiferromagnetieally ordered core and a spin- glass-like surface shell. In addition, both the exchange bias field and the vertical magnetization shift can be observed in this system at 10 K after field cooling. This observed exchange bias effect is explained in terms of the exchange interaction between the antiferromagnetie core and the spin-glass-like shell.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/21/7/078101