Maturing process of solitary wave train in a step-down chain

In a step-down chain a solitary wave (SW) evolves into an SW train (SWT), but the formation of well-defined SWT takes time and space and little is known of the process from immature into mature SWT. We therefore perform a detailed numerical study of this process by analysing the local velocity ampli...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 2; pp. 368 - 372
Main Author 夏继宏 王平建 刘长松
Format Journal Article
LanguageEnglish
Published 01.02.2012
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/21/2/024501

Cover

More Information
Summary:In a step-down chain a solitary wave (SW) evolves into an SW train (SWT), but the formation of well-defined SWT takes time and space and little is known of the process from immature into mature SWT. We therefore perform a detailed numerical study of this process by analysing the local velocity amplitude and peak overlap of immature ordered SWs. The first SW continuously increases to maximal velocity amplitude and peak overlap until it is matured, but for following SWs there exist a minimal and maximal value of local velocity amplitude and, a minimal and maximal value of local peak overlap, clarifying the details of the energy propagation along the stepped chain. The immature and mature SWTs show the same dependence of the phase velocity on the SWs sequence. These provide guidelines for when or where the attention should be paid in the study of SWT.
Bibliography:granular systems, solitary wave, molecular dynamics simulation
Xia Ji-Hong, Wang Ping-Jian, Liu Chang-Song a) Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China b) Department of Physics, Chongqing University of Arts and Sciences, Chongqing 402160, China
In a step-down chain a solitary wave (SW) evolves into an SW train (SWT), but the formation of well-defined SWT takes time and space and little is known of the process from immature into mature SWT. We therefore perform a detailed numerical study of this process by analysing the local velocity amplitude and peak overlap of immature ordered SWs. The first SW continuously increases to maximal velocity amplitude and peak overlap until it is matured, but for following SWs there exist a minimal and maximal value of local velocity amplitude and, a minimal and maximal value of local peak overlap, clarifying the details of the energy propagation along the stepped chain. The immature and mature SWTs show the same dependence of the phase velocity on the SWs sequence. These provide guidelines for when or where the attention should be paid in the study of SWT.
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/21/2/024501