Environmental stability and cryogenic thermal cycling of low-temperature plasma-deposited silicon nitride thin films

Stress in low-temperature plasma-enhanced chemical vapor deposited silicon nitride ( Si N x ) thin films subject to cryogenic thermal cycling ( 100 - 323 K ) has been measured. It is observed that the Si N x deposition temperature strongly influences the thin film characteristics. For films deposite...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 99; no. 5; pp. 053519 - 053519-9
Main Authors Martyniuk, M., Antoszewski, J., Musca, C. A., Dell, J. M., Faraone, L.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.03.2006
Subjects
Online AccessGet full text
ISSN0021-8979
1089-7550
DOI10.1063/1.2179969

Cover

Abstract Stress in low-temperature plasma-enhanced chemical vapor deposited silicon nitride ( Si N x ) thin films subject to cryogenic thermal cycling ( 100 - 323 K ) has been measured. It is observed that the Si N x deposition temperature strongly influences the thin film characteristics. For films deposited between 200 and 300 ° C , the thermal expansion coefficient is similar to that of silicon over the 180 - 323 K temperature range. The room temperature thermal expansion coefficient of Si N x films is found to decrease sublinearly from 5.2 × 10 − 6 to 2.6 × 10 − 6 K − 1 as the temperature of the deposition process is increased from 50 to 300 ° C . The negative correlation between deposition temperature and thin film thermal expansion coefficient, and the positive correlation between deposition temperature and the thin film Young's modulus inferred from nanoindentation are postulated to be associated with the local bonding environment within the thin film. The stress state of Si N x films deposited above 150 ° C is stable under atmospheric conditions, in contrast to Si N x films deposited below 100 ° C , which under atmospheric storage conditions become more tensile with time due to oxidation. In addition, Si N x thin films deposited below 100 ° C exhibit higher tensile stress values in vacuum than at atmospheric pressure, and vacuum annealing at 50 ° C of films deposited below 100 ° C introduces further tensile stress changes. These stress changes have been shown to be fully reversible upon reexposure to high purity nitrogen, helium, argon, oxygen, or laboratory atmosphere, and are likely to be associated with thin film porosity.
AbstractList Stress in low-temperature plasma-enhanced chemical vapor deposited silicon nitride (SiNx) thin films subject to cryogenic thermal cycling (100–323K) has been measured. It is observed that the SiNx deposition temperature strongly influences the thin film characteristics. For films deposited between 200 and 300°C, the thermal expansion coefficient is similar to that of silicon over the 180–323K temperature range. The room temperature thermal expansion coefficient of SiNx films is found to decrease sublinearly from 5.2×10−6to2.6×10−6K−1 as the temperature of the deposition process is increased from 50to300°C. The negative correlation between deposition temperature and thin film thermal expansion coefficient, and the positive correlation between deposition temperature and the thin film Young’s modulus inferred from nanoindentation are postulated to be associated with the local bonding environment within the thin film. The stress state of SiNx films deposited above 150°C is stable under atmospheric conditions, in contrast to SiNx films deposited below 100°C, which under atmospheric storage conditions become more tensile with time due to oxidation. In addition, SiNx thin films deposited below 100°C exhibit higher tensile stress values in vacuum than at atmospheric pressure, and vacuum annealing at 50°C of films deposited below 100°C introduces further tensile stress changes. These stress changes have been shown to be fully reversible upon reexposure to high purity nitrogen, helium, argon, oxygen, or laboratory atmosphere, and are likely to be associated with thin film porosity.
Stress in low-temperature plasma-enhanced chemical vapor deposited silicon nitride (SiN{sub x}) thin films subject to cryogenic thermal cycling (100-323 K) has been measured. It is observed that the SiN{sub x} deposition temperature strongly influences the thin film characteristics. For films deposited between 200 and 300 deg. C, the thermal expansion coefficient is similar to that of silicon over the 180-323 K temperature range. The room temperature thermal expansion coefficient of SiN{sub x} films is found to decrease sublinearly from 5.2x10{sup -6} to 2.6x10{sup -6} K{sup -1} as the temperature of the deposition process is increased from 50 to 300 deg. C. The negative correlation between deposition temperature and thin film thermal expansion coefficient, and the positive correlation between deposition temperature and the thin film Young's modulus inferred from nanoindentation are postulated to be associated with the local bonding environment within the thin film. The stress state of SiN{sub x} films deposited above 150 deg. C is stable under atmospheric conditions, in contrast to SiN{sub x} films deposited below 100 deg. C, which under atmospheric storage conditions become more tensile with time due to oxidation. In addition, SiN{sub x} thin films deposited below 100 deg. C exhibit higher tensile stress values in vacuum than at atmospheric pressure, and vacuum annealing at 50 deg. C of films deposited below 100 deg. C introduces further tensile stress changes. These stress changes have been shown to be fully reversible upon reexposure to high purity nitrogen, helium, argon, oxygen, or laboratory atmosphere, and are likely to be associated with thin film porosity.
Stress in low-temperature plasma-enhanced chemical vapor deposited silicon nitride ( Si N x ) thin films subject to cryogenic thermal cycling ( 100 - 323 K ) has been measured. It is observed that the Si N x deposition temperature strongly influences the thin film characteristics. For films deposited between 200 and 300 ° C , the thermal expansion coefficient is similar to that of silicon over the 180 - 323 K temperature range. The room temperature thermal expansion coefficient of Si N x films is found to decrease sublinearly from 5.2 × 10 − 6 to 2.6 × 10 − 6 K − 1 as the temperature of the deposition process is increased from 50 to 300 ° C . The negative correlation between deposition temperature and thin film thermal expansion coefficient, and the positive correlation between deposition temperature and the thin film Young's modulus inferred from nanoindentation are postulated to be associated with the local bonding environment within the thin film. The stress state of Si N x films deposited above 150 ° C is stable under atmospheric conditions, in contrast to Si N x films deposited below 100 ° C , which under atmospheric storage conditions become more tensile with time due to oxidation. In addition, Si N x thin films deposited below 100 ° C exhibit higher tensile stress values in vacuum than at atmospheric pressure, and vacuum annealing at 50 ° C of films deposited below 100 ° C introduces further tensile stress changes. These stress changes have been shown to be fully reversible upon reexposure to high purity nitrogen, helium, argon, oxygen, or laboratory atmosphere, and are likely to be associated with thin film porosity.
Author Musca, C. A.
Dell, J. M.
Faraone, L.
Martyniuk, M.
Antoszewski, J.
Author_xml – sequence: 1
  givenname: M.
  surname: Martyniuk
  fullname: Martyniuk, M.
  email: mariusz@ee.uwa.edu.au
  organization: School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia 6009, Australia
– sequence: 2
  givenname: J.
  surname: Antoszewski
  fullname: Antoszewski, J.
  organization: School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia 6009, Australia
– sequence: 3
  givenname: C.
  surname: Musca
  middlename: A.
  fullname: Musca, C. A.
  organization: School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia 6009, Australia
– sequence: 4
  givenname: J.
  surname: Dell
  middlename: M.
  fullname: Dell, J. M.
  organization: School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia 6009, Australia
– sequence: 5
  givenname: L.
  surname: Faraone
  fullname: Faraone, L.
  organization: School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia 6009, Australia
BackLink https://www.osti.gov/biblio/20787929$$D View this record in Osti.gov
BookMark eNp1kU9LAzEQxYNUsK0e_AYBTx62zWR3m81FkFL_QMGLnpdsdraN7CYliUq_vZHWg6KnOczvPd68mZCRdRYJuQQ2A7bI5zDjIKRcyBMyBlbJTJQlG5ExYxyySgp5RiYhvDIGUOVyTOLKvhvv7IA2qp6GqBrTm7inyrZU-73boDWaxi36Ie31XvfGbqjraO8-sojDDr2Kbx7prldhUFmLOxdMxJaGZKSdpdZEb1pMHsbSzvRDOCenneoDXhznlLzcrZ6XD9n66f5xebvOdA48ZkKB5iA1ikqxhouWKZnzalEUgBxKbFiuF00JedsVolUFQlVwZMibokynsnxKrg6-LkRTB51i6W2KZFHHmjNRCcllouYHSnsXgseuTqCKxtnolelrYPVXtTXUx2qT4vqXYufNoPz-T_bmwIZv1__hH7-oD7_IPwE3OpJJ
CODEN JAPIAU
CitedBy_id crossref_primary_10_1109_TED_2011_2154333
crossref_primary_10_1109_TMTT_2009_2033865
crossref_primary_10_1063_1_4756998
crossref_primary_10_1021_acsami_4c22198
crossref_primary_10_1002_adfm_202103153
crossref_primary_10_1016_j_jmr_2016_07_012
crossref_primary_10_1021_nl202562u
crossref_primary_10_1109_JMEMS_2007_900887
crossref_primary_10_1016_j_mseb_2009_04_019
crossref_primary_10_1109_JMEMS_2016_2548485
crossref_primary_10_1002_adpr_202300213
crossref_primary_10_1016_j_microrel_2007_01_060
crossref_primary_10_1051_epjap_2020190258
Cites_doi 10.1063/1.372151
10.1063/1.1326856
10.1088/0508-3443/13/11/311
10.1063/1.371463
10.1063/1.1432773
10.1016/S0924-4247(01)00903-7
10.1063/1.323747
10.1143/JJAP.6.1252
10.1063/1.364347
10.1063/1.372054
10.1016/S0924-4247(01)00586-6
10.1063/1.355031
10.1063/1.368466
10.1063/1.367118
10.1016/0040-6090(86)90301-9
10.1063/1.1525054
10.1088/0960-1317/11/5/323
10.1116/1.588780
10.1063/1.366126
10.1088/0508-3443/18/1/304
10.1103/PhysRevB.65.161202
10.1063/1.112772
10.1063/1.1927708
10.1116/1.586809
10.1063/1.343501
10.1088/0022-3727/13/11/018
10.1088/0022-3727/15/10/018
10.1063/1.1287771
10.1063/1.1753662
10.1116/1.578800
10.1063/1.360290
10.1016/j.tsf.2004.01.047
10.1063/1.1563297
10.1016/S1359-6454(98)00387-5
10.1088/0960-1317/6/1/001
10.1063/1.355025
10.1016/S0079-6727(02)00024-1
10.1016/0040-6090(84)90212-8
10.1149/1.2086517
10.1063/1.331244
10.1063/1.1635647
10.1103/PhysRevB.50.6199
10.1098/rspa.1909.0021
10.1117/12.604245
10.1063/1.97969
10.1063/1.2006972
10.1117/12.476343
10.1007/s11664-003-0043-0
10.1016/0042-207X(64)90475-0
10.1016/S0924-4247(99)00019-9
10.1557/JMR.1993.1845
10.1007/s11664-000-0235-9
10.1063/1.2089161
10.1063/1.1889236
10.1117/12.523327
10.1117/12.559296
10.1002/pssb.2221920224
ContentType Journal Article
Copyright 2006 American Institute of Physics
Copyright_xml – notice: 2006 American Institute of Physics
DBID AAYXX
CITATION
OTOTI
DOI 10.1063/1.2179969
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
EndPage 053519-9
ExternalDocumentID 20787929
10_1063_1_2179969
jap
GroupedDBID -DZ
-~X
.DC
186
1UP
2-P
29J
4.4
53G
5GY
5VS
6TJ
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
AAYJJ
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFDAS
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
MVM
N9A
NPSNA
O-B
OHT
P0-
P2P
RIP
RNS
ROL
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
ZCG
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
0ZJ
6XO
ABPTK
AGIHO
OTOTI
TAF
UE8
ID FETCH-LOGICAL-c312t-7a1c219ce78a0b27d0a93286441e215eb03c6b513df47da4e1842e0e2b4589703
ISSN 0021-8979
IngestDate Thu May 18 22:22:25 EDT 2023
Tue Jul 01 01:22:46 EDT 2025
Thu Apr 24 22:57:26 EDT 2025
Fri Jun 21 00:18:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c312t-7a1c219ce78a0b27d0a93286441e215eb03c6b513df47da4e1842e0e2b4589703
ParticipantIDs osti_scitechconnect_20787929
crossref_citationtrail_10_1063_1_2179969
crossref_primary_10_1063_1_2179969
scitation_primary_10_1063_1_2179969Environmental_stabil
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-03-01
PublicationDateYYYYMMDD 2006-03-01
PublicationDate_xml – month: 03
  year: 2006
  text: 2006-03-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of applied physics
PublicationYear 2006
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Fujita, A.; Suzuki, T.; Kataoka, N.; Fukamichi, K. 1994; 50
Chang, H.-Y.; Meng, C.-Y.; Huang, C.-W.; Lee, S.-C. 2005; 98
Zhao, J.-H.; Ryan, T.; Ho, P.; McKerrow, A.; Shih, W.-Y. 2000; 88
Novice, M. 1964; 14
Janda, M. 1986; 142
Thurn, J.; Cook, R. 2002; 91
Fang, W.; Tsai, H.-C.; Lo, C.-Y. 1999; 77
Marques, F.; Lacerda, R.; Lima, M.; Vilcarromero, J. 1995; 192
de Lima, M.; Lacerda, R.; Vilcarromero, J.; Marques, F. 1999; 86
Volkert, C. 1993; 74
Hirsch, E. 1982; 15
Ziebart, V.; Paul, O.; Baltes, H. 1999; 546
Kraft, O.; Nix, W. 1998; 83
Lee, C.; Wang, C.; Xu, C.; Chen, J.; Chang, J.; Liao, Y.; Chi, G. 2004; 5515
Wu, T.; Rosler, R. 1992; 35
Winchester, K.; Dell, J. 2001; 11
Novice, M. 1962; 13
Janda, M. 1984; 112
Memmi, D.; Foglietti, V.; Cianci, E.; Caliano, G.; Pappalardo, M. 2002; A99
Hill, A.; Hoffman, G. 1967; 18
Soh, M.; Savvides, N.; Musca, C.; Martyniuk, M.; Faraone, L. 2005; 97
Kramer, T.; Paul, O. 2001; 92
Keller, R.-M.; Baker, S.; Arzt, E. 1999; 47
Leplan, H.; Geenen, B.; Robic, J.; Pauleau, Y. 1995; 78
Jansen, F.; Machonkin, M.; Palmieri, N.; Kuhman, D. 1987; 50
Haque, M.; Naseem, H.; Brown, W. 1997; 81
Witvrouw, A.; Spaepen, F. 1993; 74
Stoffel, A.; Kovacs, A.; Kronast, W.; Muller, B. 1996; 6
Haque, M.; Naseem, H.; Brown, W. 1997; 82
Thouless, M.; Gupta, J.; Harper, J. 1993; 8
Kobrinsky, M.; Thompson, C.; Gross, M. 2001; 89
Dell, J.; Antoszewski, J.; Rais, M.; Musca, C.; White, J.; Nener, B.; Faraone, L. 2000; 29
Liao, W.-S.; Lin, C.-H.; Lee, S.-C. 1994; 65
Weijers, T.; Elliman, R.; Timmers, H. 2004; 219-220
Zhao, J.-H.; Du, Y.; Morgen, M.; Ho, P. 2000; 87
Hirsch, E. 1980; 13
Elliman, R.; Timmers, H.; Weijers, T. 2004; 219-220
Liu, J.; Gan, D.; Hu, C.; Kiene, M.; Ho, P.; Volksen, W.; Miller, R. 2002; 81
Faivre, C.; Bellet, D.; Dolino, G. 2000; 87
Blech, I.; Cohen, U. 1982; 53
Marques, F.; Wickboldt, P.; Pang, D.; Chan, J.; Paul, W. 1998; 84
Thurn, J.; Cook, R.; Kamarajugadda, M.; Bozeman, S.; Stearns, L. 2004; 95
Bargmann, M.; Kumpel, A.; Tada, H.; Nieva, P.; Zavracky, P.; Miaoulis, I.; Wong, P. 2000; 605
Stoney, G. 1909; 82
Antoszewski, J.; Dell, J.; Shivakumar, T.; Martyniuk, M.; Winchester, K.; Wehner, J.; Musca, C.; Faraone, L. 2002; 4935
Antoszewski, J.; Musca, C.; Dell, J.; Faraone, L. 2003; 32
Dell, J.; Winchester, K.; Musca, C.; Antoszewski, J.; Faraone, L. 2002; 02EX601
Thurn, J.; Hughey, M. 2004; 95
Martyniuk, M.; Antoszewski, J.; Musca, C.; Dell, J.; Faraone, L. 2004; 5276
Tokuyama, T.; Fujii, Y.; Sugita, Y.; Kishino, S. 1967; 6
de Lima, M.; Marques, F. 2001; 398-399
Hughey, M.; Cook, R. 2004; 460
Lim, C.; Toh, C.; Fu, J.; Lahiri, S. 1996; 15
Hughey, M.; Cook, R. 2005; 97
Rogalski, A. 2003; 27
Jiang, J. 2002; 65
Ambree, P.; Kreller, F.; Wolf, R.; Wandel, K. 1993; 11
Sankur, H.; Gunning, W. 1989; 66
Martyniuk, M. 2005; 5798
Smith, D.; Alimonda, A.; Chen, C.-C.; Ready, S.; Wacker, B. 1990; 137
Lyon, K.; Salinger, G.; Swenson, C.; White, G. 1977; 48
Blech, I.; Wood, P. 1993; 11
Dominguez, C.; Rodriguez, J.; Riera, M.; Llobera, A.; Diaz, B. 2003; 93
Carlotti, G.; Doucet, L.; Dupeux, M. 1996; 14
Walmsley, B.; Liu, Y.; Hu, X.; Bush, M.; Winchester, K.; Martyniuk, M.; Dell, J.; Faraone, L. 2005; 98
(2023071504484881800_c17) 2001; 398–399
(2023071504484881800_c36) 1996; 15
(2023071504484881800_c58) 2005; 5798
(2023071504484881800_c60) 1991
(2023071504484881800_c7) 2003; 27
(2023071504484881800_c22) 2004; 95
(2023071504484881800_c53) 1994; 65
(2023071504484881800_c31) 2001; 92
(2023071504484881800_c5) 2002; A99
(2023071504484881800_c29) 2000; 605
(2023071504484881800_c63) 2005; 97
(2023071504484881800_c26) 2004; 95
(2023071504484881800_c13) 1993; 74
(2023071504484881800_c48) 1989; 66
(2023071504484881800_c38) 2001; 89
(2023071504484881800_c51) 1964; 14
(2023071504484881800_c64) 2005; 98
(2023071504484881800_c61) 2002; 65
(2023071504484881800_c15) 1993; 11
(2023071504484881800_c8) 2000; 29
(2023071504484881800_c1) 2002; 02EX601
(2023071504484881800_c52) 1967; 18
(2023071504484881800_c43) 1982; 53
(2023071504484881800_c35) 2004; 460
(2023071504484881800_c6) 1996; 6
(2023071504484881800_c37) 1999; 47
(2023071504484881800_c3) 2002; 4935
(2023071504484881800_c18) 1984; 112
(2023071504484881800_c30) 1967; 6
(2023071504484881800_c42) 2003; 93
(2023071504484881800_c55) 2004; 219–220
(2023071504484881800_c28) 2000; 88
(2023071504484881800_c47) 1982; 15
(2023071504484881800_c4) 2004; 5515
(2023071504484881800_c44) 1995; 78
(2023071504484881800_c21) 1998; 83
(2023071504484881800_c54) 2005; 98
(2023071504484881800_c66) 2000; 87
(2023071504484881800_c45) 1992; 35
(2023071504484881800_c65) 2002; 81
(2023071504484881800_c40) 1997; 82
(2023071504484881800_c56) 2004; 219–220
(2023071504484881800_c19) 1986; 142
(2023071504484881800_c2) 2001; 11
(2023071504484881800_c39) 1993; 8
(2023071504484881800_c24) 1999; 77
(2023071504484881800_c14) 1998; 84
(2023071504484881800_c32) 2005; 97
(2023071504484881800_c33) 1999; 546
(2023071504484881800_c50) 1962; 13
(2023071504484881800_c41) 1996; 14
(2023071504484881800_c9) 2003; 32
(2023071504484881800_c57) 1909; 82
(2023071504484881800_c34) 1995; 192
(2023071504484881800_c12) 1993; 74
(2023071504484881800_c10) 2004; 5276
(2023071504484881800_c11) 1987; 50
(2023071504484881800_c25) 2002; 91
(2023071504484881800_c46) 1980; 13
(2023071504484881800_c59) 1977; 48
(2023071504484881800_c62) 1990; 137
(2023071504484881800_c16) 1999; 86
(2023071504484881800_c23) 2000; 87
(2023071504484881800_c20) 1994; 50
(2023071504484881800_c27) 1993; 11
(2023071504484881800_c49) 1997; 81
References_xml – volume: 87
  start-page: 2131
  year: 2000
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.372151
– volume: 89
  start-page: 91
  year: 2001
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1326856
– volume: 13
  start-page: 561
  year: 1962
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/13/11/311
– volume: 5798
  start-page: 216
  year: 2005
  publication-title: Proc. SPIE
– volume: 86
  start-page: 4936
  year: 1999
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.371463
– volume: 91
  start-page: 1988
  year: 2002
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1432773
– volume: 14
  start-page: 385
  year: 1964
  publication-title: Vacuum
– volume: A99
  start-page: 85
  year: 2002
  publication-title: Sens. Actuators, A
  doi: 10.1016/S0924-4247(01)00903-7
– volume: 48
  start-page: 865
  year: 1977
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.323747
– volume: 6
  start-page: 1252
  year: 1967
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.6.1252
– volume: 81
  start-page: 3129
  year: 1997
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.364347
– volume: 82
  start-page: 172
  year: 1909
  publication-title: Proc. R. Soc. London, Ser. A
– volume: 87
  start-page: 1575
  year: 2000
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.372054
– volume: 92
  start-page: 292
  year: 2001
  publication-title: Sens. Actuators, A
  doi: 10.1016/S0924-4247(01)00586-6
– volume: 4935
  start-page: 148
  year: 2002
  publication-title: Proc. SPIE
– volume: 74
  start-page: 7154
  year: 1993
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.355031
– volume: 29
  start-page: 841
  year: 2000
  publication-title: J. Electron. Mater.
– volume: 398-399
  start-page: 549
  year: 2001
  publication-title: Thin Solid Films
– volume: 84
  start-page: 3118
  year: 1998
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.368466
– volume: 83
  start-page: 3035
  year: 1998
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.367118
– volume: 5515
  start-page: 170
  year: 2004
  publication-title: Proc. SPIE
– volume: 142
  start-page: 37
  year: 1986
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(86)90301-9
– volume: 81
  start-page: 4180
  year: 2002
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1525054
– volume: 546
  start-page: 103
  year: 1999
  publication-title: Mater. Res. Soc. Symp. Proc.
– volume: 98
  start-page: 84501
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 11
  start-page: 589
  year: 2001
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/11/5/323
– volume: 14
  start-page: 3460
  year: 1996
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.588780
– volume: 605
  start-page: 235
  year: 2000
  publication-title: Mater. Res. Soc. Symp. Proc.
– volume: 82
  start-page: 2922
  year: 1997
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.366126
– volume: 192
  start-page: 549
  year: 1995
  publication-title: Phys. Status Solidi B
– volume: 5276
  start-page: 451
  year: 2004
  publication-title: Proc. SPIE
– volume: 18
  start-page: 13
  year: 1967
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/18/1/304
– volume: 35
  start-page: 65
  year: 1992
  publication-title: Solid State Technol.
– volume: 65
  start-page: 161202
  year: 2002
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.161202
– volume: 65
  start-page: 2229
  year: 1994
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.112772
– volume: 97
  start-page: 114914
  year: 2005
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1927708
– volume: 11
  start-page: 614
  year: 1993
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.586809
– volume: 66
  start-page: 807
  year: 1989
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.343501
– volume: 13
  start-page: 2081
  year: 1980
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/13/11/018
– volume: 8
  start-page: 1845
  year: 1993
  publication-title: J. Mater. Res.
– volume: 15
  start-page: 1991
  year: 1982
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/15/10/018
– volume: 88
  start-page: 3029
  year: 2000
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1287771
– volume: 95
  start-page: 7892
  year: 2004
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1753662
– volume: 11
  start-page: 728
  year: 1993
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.578800
– volume: 77
  start-page: 21
  year: 1999
  publication-title: Sens. Actuators, A
– volume: 78
  start-page: 962
  year: 1995
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.360290
– volume: 460
  start-page: 7
  year: 2004
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.01.047
– volume: 93
  start-page: 5125
  year: 2003
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1563297
– volume: 47
  start-page: 415
  year: 1999
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(98)00387-5
– volume: 97
  start-page: 93714
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 6
  start-page: 1
  year: 1996
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/6/1/001
– volume: 50
  start-page: 1059
  year: 1987
  publication-title: Appl. Phys. Lett.
– volume: 74
  start-page: 7107
  year: 1993
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.355025
– volume: 15
  start-page: 2177
  year: 1996
  publication-title: J. Mater. Sci. Lett.
– volume: 27
  start-page: 59
  year: 2003
  publication-title: Prog. Quantum Electron.
  doi: 10.1016/S0079-6727(02)00024-1
– volume: 112
  start-page: 219
  year: 1984
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(84)90212-8
– volume: 98
  start-page: 44904
  year: 2005
  publication-title: J. Appl. Phys.
– volume: 219-220
  start-page: 680
  year: 2004
  publication-title: Nucl. Instrum. Methods Phys. Res. B
– volume: 137
  start-page: 614
  year: 1990
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2086517
– volume: 219-220
  start-page: 410
  year: 2004
  publication-title: Nucl. Instrum. Methods Phys. Res. B
– volume: 53
  start-page: 4202
  year: 1982
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.331244
– volume: 95
  start-page: 967
  year: 2004
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1635647
– volume: 50
  start-page: 6199
  year: 1994
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.6199
– volume: 02EX601
  start-page: 567
  year: 2002
  publication-title: Proc. IEEE
– volume: 32
  start-page: 627
  year: 2003
  publication-title: J. Electron. Mater.
– volume: 13
  start-page: 2081
  year: 1980
  ident: 2023071504484881800_c46
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/13/11/018
– volume: 65
  start-page: 161202
  year: 2002
  ident: 2023071504484881800_c61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.161202
– volume: 546
  start-page: 103
  year: 1999
  ident: 2023071504484881800_c33
  publication-title: Mater. Res. Soc. Symp. Proc.
– volume-title: Engineered Materials Handbook
  year: 1991
  ident: 2023071504484881800_c60
– volume: 82
  start-page: 172
  year: 1909
  ident: 2023071504484881800_c57
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1909.0021
– volume: 87
  start-page: 2131
  year: 2000
  ident: 2023071504484881800_c66
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.372151
– volume: 95
  start-page: 967
  year: 2004
  ident: 2023071504484881800_c26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1635647
– volume: 97
  start-page: 114914
  year: 2005
  ident: 2023071504484881800_c32
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1927708
– volume: 11
  start-page: 614
  year: 1993
  ident: 2023071504484881800_c27
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.586809
– volume: 66
  start-page: 807
  year: 1989
  ident: 2023071504484881800_c48
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.343501
– volume: 74
  start-page: 7154
  year: 1993
  ident: 2023071504484881800_c12
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.355031
– volume: 35
  start-page: 65
  year: 1992
  ident: 2023071504484881800_c45
  publication-title: Solid State Technol.
– volume: 5798
  start-page: 216
  year: 2005
  ident: 2023071504484881800_c58
  publication-title: Proc. SPIE
  doi: 10.1117/12.604245
– volume: 91
  start-page: 1988
  year: 2002
  ident: 2023071504484881800_c25
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1432773
– volume: 50
  start-page: 1059
  year: 1987
  ident: 2023071504484881800_c11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.97969
– volume: 142
  start-page: 37
  year: 1986
  ident: 2023071504484881800_c19
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(86)90301-9
– volume: 92
  start-page: 292
  year: 2001
  ident: 2023071504484881800_c31
  publication-title: Sens. Actuators, A
  doi: 10.1016/S0924-4247(01)00586-6
– volume: 89
  start-page: 91
  year: 2001
  ident: 2023071504484881800_c38
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1326856
– volume: 88
  start-page: 3029
  year: 2000
  ident: 2023071504484881800_c28
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1287771
– volume: 98
  start-page: 44904
  year: 2005
  ident: 2023071504484881800_c64
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2006972
– volume: 48
  start-page: 865
  year: 1977
  ident: 2023071504484881800_c59
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.323747
– volume: 15
  start-page: 1991
  year: 1982
  ident: 2023071504484881800_c47
  publication-title: J. Phys. D
  doi: 10.1088/0022-3727/15/10/018
– volume: 11
  start-page: 589
  year: 2001
  ident: 2023071504484881800_c2
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/11/5/323
– volume: 6
  start-page: 1
  year: 1996
  ident: 2023071504484881800_c6
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/6/1/001
– volume: 86
  start-page: 4936
  year: 1999
  ident: 2023071504484881800_c16
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.371463
– volume: 50
  start-page: 6199
  year: 1994
  ident: 2023071504484881800_c20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.6199
– volume: 18
  start-page: 13
  year: 1967
  ident: 2023071504484881800_c52
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/18/1/304
– volume: 13
  start-page: 561
  year: 1962
  ident: 2023071504484881800_c50
  publication-title: Br. J. Appl. Phys.
  doi: 10.1088/0508-3443/13/11/311
– volume: 4935
  start-page: 148
  year: 2002
  ident: 2023071504484881800_c3
  publication-title: Proc. SPIE
  doi: 10.1117/12.476343
– volume: 112
  start-page: 219
  year: 1984
  ident: 2023071504484881800_c18
  publication-title: Thin Solid Films
  doi: 10.1016/0040-6090(84)90212-8
– volume: 398–399
  start-page: 549
  year: 2001
  ident: 2023071504484881800_c17
  publication-title: Thin Solid Films
– volume: 32
  start-page: 627
  year: 2003
  ident: 2023071504484881800_c9
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-003-0043-0
– volume: 93
  start-page: 5125
  year: 2003
  ident: 2023071504484881800_c42
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1563297
– volume: 81
  start-page: 3129
  year: 1997
  ident: 2023071504484881800_c49
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.364347
– volume: 219–220
  start-page: 680
  year: 2004
  ident: 2023071504484881800_c56
  publication-title: Nucl. Instrum. Methods Phys. Res. B
– volume: 14
  start-page: 385
  year: 1964
  ident: 2023071504484881800_c51
  publication-title: Vacuum
  doi: 10.1016/0042-207X(64)90475-0
– volume: 84
  start-page: 3118
  year: 1998
  ident: 2023071504484881800_c14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.368466
– volume: 77
  start-page: 21
  year: 1999
  ident: 2023071504484881800_c24
  publication-title: Sens. Actuators, A
  doi: 10.1016/S0924-4247(99)00019-9
– volume: 15
  start-page: 2177
  year: 1996
  ident: 2023071504484881800_c36
  publication-title: J. Mater. Sci. Lett.
– volume: 14
  start-page: 3460
  year: 1996
  ident: 2023071504484881800_c41
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.588780
– volume: 95
  start-page: 7892
  year: 2004
  ident: 2023071504484881800_c22
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1753662
– volume: 87
  start-page: 1575
  year: 2000
  ident: 2023071504484881800_c23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.372054
– volume: 8
  start-page: 1845
  year: 1993
  ident: 2023071504484881800_c39
  publication-title: J. Mater. Res.
  doi: 10.1557/JMR.1993.1845
– volume: 137
  start-page: 614
  year: 1990
  ident: 2023071504484881800_c62
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2086517
– volume: 460
  start-page: 7
  year: 2004
  ident: 2023071504484881800_c35
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2004.01.047
– volume: 6
  start-page: 1252
  year: 1967
  ident: 2023071504484881800_c30
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.6.1252
– volume: 27
  start-page: 59
  year: 2003
  ident: 2023071504484881800_c7
  publication-title: Prog. Quantum Electron.
  doi: 10.1016/S0079-6727(02)00024-1
– volume: 29
  start-page: 841
  year: 2000
  ident: 2023071504484881800_c8
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-000-0235-9
– volume: 98
  start-page: 84501
  year: 2005
  ident: 2023071504484881800_c54
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2089161
– volume: 97
  start-page: 93714
  year: 2005
  ident: 2023071504484881800_c63
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1889236
– volume: 83
  start-page: 3035
  year: 1998
  ident: 2023071504484881800_c21
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.367118
– volume: 47
  start-page: 415
  year: 1999
  ident: 2023071504484881800_c37
  publication-title: Acta Mater.
  doi: 10.1016/S1359-6454(98)00387-5
– volume: 53
  start-page: 4202
  year: 1982
  ident: 2023071504484881800_c43
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.331244
– volume: 02EX601
  start-page: 567
  year: 2002
  ident: 2023071504484881800_c1
  publication-title: Proc. IEEE
– volume: 5276
  start-page: 451
  year: 2004
  ident: 2023071504484881800_c10
  publication-title: Proc. SPIE
  doi: 10.1117/12.523327
– volume: 5515
  start-page: 170
  year: 2004
  ident: 2023071504484881800_c4
  publication-title: Proc. SPIE
  doi: 10.1117/12.559296
– volume: 81
  start-page: 4180
  year: 2002
  ident: 2023071504484881800_c65
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1525054
– volume: 65
  start-page: 2229
  year: 1994
  ident: 2023071504484881800_c53
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.112772
– volume: 219–220
  start-page: 410
  year: 2004
  ident: 2023071504484881800_c55
  publication-title: Nucl. Instrum. Methods Phys. Res. B
– volume: A99
  start-page: 85
  year: 2002
  ident: 2023071504484881800_c5
  publication-title: Sens. Actuators, A
  doi: 10.1016/S0924-4247(01)00903-7
– volume: 11
  start-page: 728
  year: 1993
  ident: 2023071504484881800_c15
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.578800
– volume: 605
  start-page: 235
  year: 2000
  ident: 2023071504484881800_c29
  publication-title: Mater. Res. Soc. Symp. Proc.
– volume: 82
  start-page: 2922
  year: 1997
  ident: 2023071504484881800_c40
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.366126
– volume: 192
  start-page: 549
  year: 1995
  ident: 2023071504484881800_c34
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.2221920224
– volume: 74
  start-page: 7107
  year: 1993
  ident: 2023071504484881800_c13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.355025
– volume: 78
  start-page: 962
  year: 1995
  ident: 2023071504484881800_c44
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.360290
SSID ssj0011839
Score 1.9208088
Snippet Stress in low-temperature plasma-enhanced chemical vapor deposited silicon nitride ( Si N x ) thin films subject to cryogenic thermal cycling ( 100 - 323 K )...
Stress in low-temperature plasma-enhanced chemical vapor deposited silicon nitride (SiNx) thin films subject to cryogenic thermal cycling (100–323K) has been...
Stress in low-temperature plasma-enhanced chemical vapor deposited silicon nitride (SiN{sub x}) thin films subject to cryogenic thermal cycling (100-323 K) has...
SourceID osti
crossref
scitation
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 053519
SubjectTerms ANNEALING
ARGON
ATMOSPHERIC PRESSURE
CHEMICAL VAPOR DEPOSITION
CRYOGENICS
HELIUM
MATERIALS SCIENCE
NITROGEN
OXIDATION
OXYGEN
PLASMA
SILICON
SILICON NITRIDES
STRESSES
TEMPERATURE RANGE 0065-0273 K
TEMPERATURE RANGE 0273-0400 K
TENSILE PROPERTIES
THERMAL CYCLING
THERMAL EXPANSION
THIN FILMS
YOUNG MODULUS
Title Environmental stability and cryogenic thermal cycling of low-temperature plasma-deposited silicon nitride thin films
URI http://dx.doi.org/10.1063/1.2179969
https://www.osti.gov/biblio/20787929
Volume 99
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7550
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011839
  issn: 0021-8979
  databaseCode: ADMLS
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3vi9MwGA5zh-h9ED0Vp6cE8YMwWtsmbdqP4-7kOJwI3sF9K82PcoPZytahu7_eN02abrsJp1_KCG068jx98yR58wShDzRIeRgFsceLuIQBipReQVThEUJLJSkrebvQPv2anF_Ri-v4ejD4vZG1tGq4L2737iv5H1ShDHDVu2T_AVlXKRTAb8AXroAwXO-F8Vm_S63d9mE8t42jklisa3hwJrS0hOg7H4u1mNsc53n9y9OmVNZRWZ8lvfxReFK1OVygQZdQEYyUx_DBL2ZSQR2zSns4WW_zu2q2sGrWzJQ4oa5dCtbVbNXG3KnfTzo09fIW4qs5NPvC73FfilbOnvjjiSs97VJx_K6OjXmKLlHL7RsIvTQzR8f4yoTbIM08Fhvr2S4emwOTLO_ivWEedJWecfAj7WeXZH1f1q3f73RxLvGwXXJPSB7m9tEH6CBiSRIN0cHkdPrlu1uB0srRpAeZf925UiXkk3vvlpYZ1hCTD9EjUC4miWJDp1w-RU8sJHhi2PIMDVR1hA43bCeP0MNvBqTnqNliEHYMwsAg7BiELYOwZRCuS7zDILzLIGwZhC2DsGYQbhn0Al19Prs8OffsORyeIGHUeKwIBXRsQrG0CHjEZFCA6k-1klagGBUPiEh4HBJZUiYLqsKURipQEacxNF1AXqJhVVfqFcKSEND8kkFgUDQoQk6I5DzOJM1EKeJohD52LZp37ajPSpnnd5Aboffu1p_GmWXfTccallyDosSN0MljoskjEMYMBgYjxBxcf69kC4rcQPH6Pm9_gx73X8IxGjaLlXoLGrbh7yzd_gCoEKBh
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Environmental+stability+and+cryogenic+thermal+cycling+of+low-temperature+plasma-deposited+silicon+nitride+thin+films&rft.jtitle=Journal+of+applied+physics&rft.au=Martyniuk%2C+M.&rft.au=Antoszewski%2C+J.&rft.au=Musca%2C+C.+A.&rft.au=Dell%2C+J.+M.&rft.date=2006-03-01&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=99&rft.issue=5&rft_id=info:doi/10.1063%2F1.2179969&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_2179969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon