Environmental stability and cryogenic thermal cycling of low-temperature plasma-deposited silicon nitride thin films

Stress in low-temperature plasma-enhanced chemical vapor deposited silicon nitride ( Si N x ) thin films subject to cryogenic thermal cycling ( 100 - 323 K ) has been measured. It is observed that the Si N x deposition temperature strongly influences the thin film characteristics. For films deposite...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 99; no. 5; pp. 053519 - 053519-9
Main Authors Martyniuk, M., Antoszewski, J., Musca, C. A., Dell, J. M., Faraone, L.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics 01.03.2006
Subjects
Online AccessGet full text
ISSN0021-8979
1089-7550
DOI10.1063/1.2179969

Cover

More Information
Summary:Stress in low-temperature plasma-enhanced chemical vapor deposited silicon nitride ( Si N x ) thin films subject to cryogenic thermal cycling ( 100 - 323 K ) has been measured. It is observed that the Si N x deposition temperature strongly influences the thin film characteristics. For films deposited between 200 and 300 ° C , the thermal expansion coefficient is similar to that of silicon over the 180 - 323 K temperature range. The room temperature thermal expansion coefficient of Si N x films is found to decrease sublinearly from 5.2 × 10 − 6 to 2.6 × 10 − 6 K − 1 as the temperature of the deposition process is increased from 50 to 300 ° C . The negative correlation between deposition temperature and thin film thermal expansion coefficient, and the positive correlation between deposition temperature and the thin film Young's modulus inferred from nanoindentation are postulated to be associated with the local bonding environment within the thin film. The stress state of Si N x films deposited above 150 ° C is stable under atmospheric conditions, in contrast to Si N x films deposited below 100 ° C , which under atmospheric storage conditions become more tensile with time due to oxidation. In addition, Si N x thin films deposited below 100 ° C exhibit higher tensile stress values in vacuum than at atmospheric pressure, and vacuum annealing at 50 ° C of films deposited below 100 ° C introduces further tensile stress changes. These stress changes have been shown to be fully reversible upon reexposure to high purity nitrogen, helium, argon, oxygen, or laboratory atmosphere, and are likely to be associated with thin film porosity.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.2179969