The influence and explanation of fringing-induced barrier lowering on sub-100 nm MOSFETs with high-k gate dielectrics
The fringing-induced barrier lowering(FIBL) effect of sub-100 nm MOSFETs with high-k gate dielectrics is investigated using a two-dimensional device simulator.An equivalent capacitance theory is proposed to explain the physics mechanism of the FIBL effect.The FIBL effect is enhanced and the short ch...
Saved in:
Published in | Chinese physics B Vol. 21; no. 5; pp. 602 - 606 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.05.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/21/5/057305 |
Cover
Summary: | The fringing-induced barrier lowering(FIBL) effect of sub-100 nm MOSFETs with high-k gate dielectrics is investigated using a two-dimensional device simulator.An equivalent capacitance theory is proposed to explain the physics mechanism of the FIBL effect.The FIBL effect is enhanced and the short channel performance is degraded with increasing capacitance.Based on equivalent capacitance theory,the influences of channel length,junction depth,gate/lightly doped drain(LDD) overlap length,spacer material and spacer width on FIBL is thoroughly investigated.A stack gate dielectric is presented to suppress the FIBL effect. |
---|---|
Bibliography: | The fringing-induced barrier lowering(FIBL) effect of sub-100 nm MOSFETs with high-k gate dielectrics is investigated using a two-dimensional device simulator.An equivalent capacitance theory is proposed to explain the physics mechanism of the FIBL effect.The FIBL effect is enhanced and the short channel performance is degraded with increasing capacitance.Based on equivalent capacitance theory,the influences of channel length,junction depth,gate/lightly doped drain(LDD) overlap length,spacer material and spacer width on FIBL is thoroughly investigated.A stack gate dielectric is presented to suppress the FIBL effect. 11-5639/O4 high-k gate dielectric, fringing-induced barrier lowering, stack gate dielectric, MOSFET Ma Fei,Liu Hong-Xia,Kuang Qian-Wei,and Fan Ji-Bin Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Material and Devices,School of Microelectronics,Xidian University,Xi'an 710071,China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/21/5/057305 |