Solving the Schrödinger equation for a charged particle in a magnetic field using the finite difference time domain method

We extend our finite difference time domain method for numerical solution of the Schrödinger equation to cases where eigenfunctions are complex-valued. Illustrative numerical results for an electron in two dimensions, subject to a confining potential V ( x , y ) , in a constant perpendicular magneti...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. A Vol. 372; no. 18; pp. 3145 - 3148
Main Authors Sudiarta, I. Wayan, Geldart, D.J. Wallace
Format Journal Article
LanguageEnglish
Published Elsevier B.V 28.04.2008
Subjects
Online AccessGet full text
ISSN0375-9601
1873-2429
DOI10.1016/j.physleta.2008.01.078

Cover

More Information
Summary:We extend our finite difference time domain method for numerical solution of the Schrödinger equation to cases where eigenfunctions are complex-valued. Illustrative numerical results for an electron in two dimensions, subject to a confining potential V ( x , y ) , in a constant perpendicular magnetic field demonstrate the accuracy of the method.
ISSN:0375-9601
1873-2429
DOI:10.1016/j.physleta.2008.01.078