Low Frequency Ultra-Thin Compact Metamaterial Absorber Comprising Split-Ring Resonators

We present a design of a low frequency ultra-thin compact and polarization-insensitive metamaterial absorber (MA). The designed MA is a two-layer structure, a periodic array of novel split-ring resonators (SRRs), which are constructed in an FR4 dielectric layer, and another ultra-thin grounded sheet...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 31; no. 6; pp. 211 - 214
Main Author 林宝勤 达新宇 赵尚弘 蒙文 李凡 郑秋容 王布宏
Format Journal Article
LanguageEnglish
Published 01.06.2014
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/31/6/067801

Cover

More Information
Summary:We present a design of a low frequency ultra-thin compact and polarization-insensitive metamaterial absorber (MA). The designed MA is a two-layer structure, a periodic array of novel split-ring resonators (SRRs), which are constructed in an FR4 dielectric layer, and another ultra-thin grounded sheet is attached to the bottom. Numerical simulated results show that the proposed MA can realize effective absorption at the frequency 281.9 MHz, and its overall thickness is just only 0.29% of the resonant wavelength, the unit space is only 2.57%, and the absorbanee is kept well for a wide range of incident angles for different polarizations. In addition, the proposed MA is changed into a more compact one when the inter-digital structures are introduced in the SRRs. One convenient experiment is carried out in a rectangular waveguide simulator.
Bibliography:11-1959/O4
We present a design of a low frequency ultra-thin compact and polarization-insensitive metamaterial absorber (MA). The designed MA is a two-layer structure, a periodic array of novel split-ring resonators (SRRs), which are constructed in an FR4 dielectric layer, and another ultra-thin grounded sheet is attached to the bottom. Numerical simulated results show that the proposed MA can realize effective absorption at the frequency 281.9 MHz, and its overall thickness is just only 0.29% of the resonant wavelength, the unit space is only 2.57%, and the absorbanee is kept well for a wide range of incident angles for different polarizations. In addition, the proposed MA is changed into a more compact one when the inter-digital structures are introduced in the SRRs. One convenient experiment is carried out in a rectangular waveguide simulator.
LIN Bao-Qin, DA Xin-Yu, ZHAO Shang-Hong, MENG Wen, LI Fan, ZHENG Qiu-Rong, WANG Bu-Hong( Institute of Information and Navigation, Air Force Engineering University, Xi'an 710077)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/31/6/067801