Quadripartite entangled state from cascaded second-harmonic generation

A generation system of continuous-variable (CV) quadripartite entangled state based on two cascaded second- harmonic generation (SHG) cavities below the threshold is investigated. Two reflected fundamental bearias of the first cavity, the reflected second-harmonic beam and the output fourth-harmonic...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 23; no. 4; pp. 256 - 261
Main Author 杨瑞 翟淑琴 杨荣国
Format Journal Article
LanguageEnglish
Published 01.04.2014
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/23/4/044202

Cover

More Information
Summary:A generation system of continuous-variable (CV) quadripartite entangled state based on two cascaded second- harmonic generation (SHG) cavities below the threshold is investigated. Two reflected fundamental bearias of the first cavity, the reflected second-harmonic beam and the output fourth-harmonic beam of the second cavity are proved to be entangled, and the dependence of the entanglement degree on the normalized frequency, pump parameter, fourth-harmonic loss parameter, and second-harmonic loss parameter is also analyzed. Due to the fact that the cavity parameters and the nonlinear crystals of the two SHG cavities can be freely chosen, the practicality of the proposed protocol is relatively perfect and the system can also be extended to the preparation of multicolor entangled states for a quantum network.
Bibliography:11-5639/O4
harmonic generation, nonlinear optics, quantum optics, quantum communication
A generation system of continuous-variable (CV) quadripartite entangled state based on two cascaded second- harmonic generation (SHG) cavities below the threshold is investigated. Two reflected fundamental bearias of the first cavity, the reflected second-harmonic beam and the output fourth-harmonic beam of the second cavity are proved to be entangled, and the dependence of the entanglement degree on the normalized frequency, pump parameter, fourth-harmonic loss parameter, and second-harmonic loss parameter is also analyzed. Due to the fact that the cavity parameters and the nonlinear crystals of the two SHG cavities can be freely chosen, the practicality of the proposed protocol is relatively perfect and the system can also be extended to the preparation of multicolor entangled states for a quantum network.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/23/4/044202