Hardening measures for bipolar transistors against microwave-induced damage

In the present paper we study the influences of the bias voltage and the external components on the damage progress of a bipolar transistor induced by high-power microwaves. The mechanism is presented by analyzing the variation in the internal distribution of the temperature in the device. The findi...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 6; pp. 637 - 641
Main Author 柴常春 马振洋 任兴荣 杨银堂 赵颖博 于新海
Format Journal Article
LanguageEnglish
Published 01.06.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/6/068502

Cover

More Information
Summary:In the present paper we study the influences of the bias voltage and the external components on the damage progress of a bipolar transistor induced by high-power microwaves. The mechanism is presented by analyzing the variation in the internal distribution of the temperature in the device. The findings show that the device becomes less vulnerable to damage with an increase in bias voltage. Both the series diode at the base and the relatively low series resistance at the emitter, Re, can obviously prolong the burnout time of the device. However, Re will aid damage to the device when the value is sufficiently high due to the fact that the highest hot spot shifts from the base-emitter junction to the base region. Moreover, the series resistance at the base Rb will weaken the capability of the device to withstand microwave damage.
Bibliography:11-5639/O4
bipolar transistor, high-power microwave, hardening measures
In the present paper we study the influences of the bias voltage and the external components on the damage progress of a bipolar transistor induced by high-power microwaves. The mechanism is presented by analyzing the variation in the internal distribution of the temperature in the device. The findings show that the device becomes less vulnerable to damage with an increase in bias voltage. Both the series diode at the base and the relatively low series resistance at the emitter, Re, can obviously prolong the burnout time of the device. However, Re will aid damage to the device when the value is sufficiently high due to the fact that the highest hot spot shifts from the base-emitter junction to the base region. Moreover, the series resistance at the base Rb will weaken the capability of the device to withstand microwave damage.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/6/068502