A CMOS frequency generation module for 60-GHz applications
A frequency generation module for 60-GHz transceivers and phased array systems is presented in this paper. It is composed of a divide-by-2 current mode logic divider (CML) and a doubler in push-push configuration. Benefiting from the CML structure and push-push configuration, the proposed frequency...
Saved in:
Published in | Journal of semiconductors Vol. 33; no. 8; pp. 102 - 106 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.08.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-4926 |
DOI | 10.1088/1674-4926/33/8/085004 |
Cover
Summary: | A frequency generation module for 60-GHz transceivers and phased array systems is presented in this paper. It is composed of a divide-by-2 current mode logic divider (CML) and a doubler in push-push configuration. Benefiting from the CML structure and push-push configuration, the proposed frequency generation module has a wide operating frequency range to cover process, voltage, and temperature variation. It is implemented in a 90-nm CMOS process, and occupies a chip area of 0.64 × 0.65 mm^2 including pads. The measurement results show that the designed frequency generation module functions properly with input frequency over 15 GHz to 25 GHz. The whole chip dissipates 12.1 mW from a 1.2-V supply excluding the output buffers. |
---|---|
Bibliography: | frequency generation; divider; doubler; CMOS A frequency generation module for 60-GHz transceivers and phased array systems is presented in this paper. It is composed of a divide-by-2 current mode logic divider (CML) and a doubler in push-push configuration. Benefiting from the CML structure and push-push configuration, the proposed frequency generation module has a wide operating frequency range to cover process, voltage, and temperature variation. It is implemented in a 90-nm CMOS process, and occupies a chip area of 0.64 × 0.65 mm^2 including pads. The measurement results show that the designed frequency generation module functions properly with input frequency over 15 GHz to 25 GHz. The whole chip dissipates 12.1 mW from a 1.2-V supply excluding the output buffers. 11-5781/TN Zhou Chunyuan, Zhang Lei, Wang Hongrui, Qian He Institute of Microelectronics, Tsinghua University, Beijing 100084, China ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1674-4926 |
DOI: | 10.1088/1674-4926/33/8/085004 |