Spectrally selective optical pumping in Doppler-broadened cesium atoms

The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations. The process, described by a three-level model with the A scheme, shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of re...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 5; pp. 267 - 271
Main Author 张军海 曾宪金 李庆萌
Format Journal Article
LanguageEnglish
Published 01.05.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/5/053202

Cover

More Information
Summary:The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations. The process, described by a three-level model with the A scheme, shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms. The 丨Fg = 3) →丨Fe = 4) resonance pumping can result in the ground state丨Fg = 4, mF = 4) sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg = 4. To enhance the anisotropy in the ground state, we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line 丨Fg = 4) → 丨Fe = 3) transition, in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field.
Bibliography:The D1 line spectrally selective pumping process in Doppler-broadened cesium is analyzed by solving the optical Bloch equations. The process, described by a three-level model with the A scheme, shows that the saturation intensity of broadened atoms is three orders of magnitude larger than that of resting atoms. The 丨Fg = 3) →丨Fe = 4) resonance pumping can result in the ground state丨Fg = 4, mF = 4) sublevel having a maximum population of 0.157 and the population difference would be about 0.01 in two adjacent magnetic sublevels of the hyperfine (HF) state Fg = 4. To enhance the anisotropy in the ground state, we suggest employing dichromatic optical HF pumping by adding a laser to excite D1 line 丨Fg = 4) → 丨Fe = 3) transition, in which the cesium magnetometer sensitivity increases by half a magnitude and is unaffected by the nonlinear Zeeman effect even in Earth's average magnetic field.
spectrally selective pumping, hyperfine structure, population
11-5639/O4
Zhang Jun-Hai, Zeng Xian-Jin, Li Qing-Meng, Huang Qiang, and Sun Wei-Min( Science School, Harbin Engineering University, Harbin 150001, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/5/053202