Wigner function and the entanglement of a quantized Bessel-Gaussian vortex state of a quantized radiation field

A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indicat...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 21; no. 8; pp. 234 - 240
Main Author 朱开成 李绍新 唐英 郑小娟 唐慧琴
Format Journal Article
LanguageEnglish
Published 01.08.2012
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/21/8/084204

Cover

More Information
Summary:A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that a quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.
Bibliography:Wigner distribution function, quantized vortex state, quantum non-Gaussian state
A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that a quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/21/8/084204