Tunable femtosecond laser in the visible range with an intracavity frequency-doubled optical parametric oscillator

We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical para- metric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-lo...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 5; pp. 339 - 341
Main Author 朱江峰 徐亮 林清峰 钟欣 韩海年 魏志义
Format Journal Article
LanguageEnglish
Published 01.05.2013
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/22/5/054210

Cover

More Information
Summary:We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical para- metric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624-672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech2 pulse profile.
Bibliography:Zhu Jiang-Feng, Xu Liang, Lin Qing-Feng, Zhong Xin, Han Hai-Nian, and Wei Zhi-Yi( 1 School of Technical Physics, Xidian University, Xi' an 710071, China 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China)
We demonstrated experimentally a synchronously pumped intracavity frequency-doubled femtosecond optical para- metric oscillator (OPO) using a periodically-poled lithium niobate (PPLN) as the nonlinear material in combination with a lithium triborate (LBO) as the doubling crystal. A Kerr-lens-mode-locked (KLM) Ti:sapphire oscillator at the wavelength of 790 nm was used as the pump source, which was capable of generating pulses with a duration as short as 117 fs. A tunable femtosecond laser covering the 624-672 nm range was realized by conveniently adjusting the OPO cavity length. A maximum average output power of 260 mW in the visible range was obtained at the pump power of 2.2 W, with a typical pulse duration of 205 fs assuming a sech2 pulse profile.
11-5639/O4
femtosecond optical parametric oscillator, intracavity frequency-doubling, tunable visible source
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/5/054210