Electron impact ionization of neon and neonic ions under distorted-wave Born approximation

The (e, 2e) triple differential cross sections of 2s orbitals of neon and neonic ions (Z = 11-14) are calculated using a distorted-wave Born approximation under coplanar asymmetric geometry. The calculated results show that, with the increase in the nuclear charge number Z, the amplitude of triple d...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 23; no. 5; pp. 249 - 252
Main Author 周丽霞 燕友果
Format Journal Article
LanguageEnglish
Published 01.05.2014
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/23/5/053402

Cover

More Information
Summary:The (e, 2e) triple differential cross sections of 2s orbitals of neon and neonic ions (Z = 11-14) are calculated using a distorted-wave Born approximation under coplanar asymmetric geometry. The calculated results show that, with the increase in the nuclear charge number Z, the amplitude of triple differential cross sections decreases. The angle difference between the binary peak position and the direction of momentum transfer gradually increases with the increase in the nuclear charge Z, and a new structure appears at an ejected angle 90° 〈 θ2 〈 120°. Three kinds of collision processes are proposed to illustrate the formation mechanism of such collision peaks.
Bibliography:The (e, 2e) triple differential cross sections of 2s orbitals of neon and neonic ions (Z = 11-14) are calculated using a distorted-wave Born approximation under coplanar asymmetric geometry. The calculated results show that, with the increase in the nuclear charge number Z, the amplitude of triple differential cross sections decreases. The angle difference between the binary peak position and the direction of momentum transfer gradually increases with the increase in the nuclear charge Z, and a new structure appears at an ejected angle 90° 〈 θ2 〈 120°. Three kinds of collision processes are proposed to illustrate the formation mechanism of such collision peaks.
(e, 2e) reaction, distorted-wave Born approximation, triple differential cross sections
Zhou Li-Xia,Yan You-Guo( College of Science, China University of Petroleum, Qingdao 266580, China)
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/23/5/053402