Set-membership binormalized data-reusing LMS algorithms
This paper presents and analyzes novel data selective normalized adaptive filtering algorithms with two data reuses. The algorithms [the set-membership binormalized LMS (SM-BN-DRLMS) algorithms] are derived using the concept of set-membership filtering (SMF). These algorithms can be regarded as gene...
Saved in:
| Published in | IEEE transactions on signal processing Vol. 51; no. 1; pp. 124 - 134 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.01.2003
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-587X 1941-0476 |
| DOI | 10.1109/TSP.2002.806562 |
Cover
| Summary: | This paper presents and analyzes novel data selective normalized adaptive filtering algorithms with two data reuses. The algorithms [the set-membership binormalized LMS (SM-BN-DRLMS) algorithms] are derived using the concept of set-membership filtering (SMF). These algorithms can be regarded as generalizations of the previously proposed set-membership NLMS (SM-NLMS) algorithm. They include two constraint sets in order to construct a space of feasible solutions for the coefficient updates. The algorithms include data-dependent step sizes that provide fast convergence and low-excess mean-squared error (MSE). Convergence analyzes in the mean squared sense are presented, and closed-form expressions are given for both white and colored input signals. Simulation results show good performance of the algorithms in terms of convergence speed, final misadjustment, and reduced computational complexity. |
|---|---|
| Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2002.806562 |