Critical amino acid residues regulating TRPA1 Zn2+ response: A comparative study across species

Cellular zinc ions (Zn2+) are crucial for signal transduction in various cell types. The transient receptor potential (TRP) ankyrin 1 (TRPA1) channel, known for its sensitivity to intracellular Zn2+ ([Zn2+]i), has been a subject of limited understanding regarding its molecular mechanism. Here, we us...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 300; no. 6; p. 107302
Main Authors Matsubara, Masaki, Muraki, Yukiko, Suzuki, Hiroka, Hatano, Noriyuki, Muraki, Katsuhiko
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.06.2024
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text
ISSN0021-9258
1083-351X
1083-351X
DOI10.1016/j.jbc.2024.107302

Cover

More Information
Summary:Cellular zinc ions (Zn2+) are crucial for signal transduction in various cell types. The transient receptor potential (TRP) ankyrin 1 (TRPA1) channel, known for its sensitivity to intracellular Zn2+ ([Zn2+]i), has been a subject of limited understanding regarding its molecular mechanism. Here, we used metal ion-affinity prediction, three-dimensional structural modeling, and mutagenesis, utilizing data from the Protein Data Bank and AlphaFold database, to elucidate the [Zn2+]i binding domain (IZD) structure composed by specific AAs residues in human (hTRPA1) and chicken TRPA1 (gTRPA1). External Zn2+ induced activation in hTRPA1, while not in gTRPA1. Moreover, external Zn2+ elevated [Zn2+]i specifically in hTRPA1. Notably, both hTRPA1 and gTRPA1 exhibited inherent sensitivity to [Zn2+]i, as evidenced by their activation upon internal Zn2+ application. The critical AAs within IZDs, specifically histidine at 983/984, lysine at 711/717, tyrosine at 714/720, and glutamate at 987/988 in IZD1, and H983/H984, tryptophan at 710/716, E854/E855, and glutamine at 979/980 in IZD2, were identified in hTRPA1/gTRPA1. Furthermore, mutations, such as the substitution of arginine at 919 (R919) to H919, abrogated the response to external Zn2+ in hTRPA1. Among single-nucleotide polymorphisms (SNPs) at Y714 and a triple SNP at R919 in hTRPA1, we revealed that the Zn2+ responses were attenuated in mutants carrying the Y714 and R919 substitution to asparagine and proline, respectively. Overall, this study unveils the intrinsic sensitivity of hTRPA1 and gTRPA1 to [Zn2+]i mediated through IZDs. Furthermore, our findings suggest that specific SNP mutations can alter the responsiveness of hTRPA1 to extracellular and intracellular Zn2+.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors equally contributed to this study.
ISSN:0021-9258
1083-351X
1083-351X
DOI:10.1016/j.jbc.2024.107302