Continuous real-time detection and management of comprehensive mental states using wireless soft multifunctional bioelectronics
Quantitatively measuring human mental states that profoundly affect cognition, behavior, and recovery would revolutionize personalized digital healthcare. Detecting fatigue, stress, and sleep is particularly important due to their interdependence: persistent fatigue can induce cognitive stress, whil...
Saved in:
Published in | Biosensors & bioelectronics Vol. 279; p. 117387 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier B.V
01.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0956-5663 1873-4235 1873-4235 |
DOI | 10.1016/j.bios.2025.117387 |
Cover
Summary: | Quantitatively measuring human mental states that profoundly affect cognition, behavior, and recovery would revolutionize personalized digital healthcare. Detecting fatigue, stress, and sleep is particularly important due to their interdependence: persistent fatigue can induce cognitive stress, while chronic stress impairs sleep quality, creating a harmful feedback loop. Here, we introduce a wireless, soft, multifunctional bioelectronic system offering the continuous real-time detection and management of comprehensive mental states. The all-in-one wearable device, mounted on the forehead, measures clinical-grade brain and cardiorespiratory signals. This membrane biopatch is imperceptible, flexible, and reusable, providing ultimate user comfort while detecting high-fidelity electroencephalogram, electrooculogram, pulse rate, and blood oxygen saturation. A set of in vivo studies with human subjects demonstrates that the soft device has great skin-conformal contact and minimized motion artifacts, capturing clinical-quality data with different activities, even during sleep. The developed signal processing methods and deep-learning algorithms offer automated, real-time classification of driving drowsiness, stress conditions, and sleep quality. The bioelectronics platforms in this study have the potential to revolutionize digital healthcare, particularly personalized medicine and at-home health monitoring. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0956-5663 1873-4235 1873-4235 |
DOI: | 10.1016/j.bios.2025.117387 |