Geo-Registering Consecutive Construction Site Recordings Using a Pre-Registered Reference Module

The monitoring of construction sites and the achieved progress is a vital aspect of construction works in the Architecture, Engineering and Construction (AEC) industry. Only if three-dimensional reconstructions require a limited time, the creation of consecutive datasets, portraying the site in subs...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 12; no. 12; p. 1928
Main Authors Vincke, Stan, Vergauwen, Maarten
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 15.06.2020
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs12121928

Cover

More Information
Summary:The monitoring of construction sites and the achieved progress is a vital aspect of construction works in the Architecture, Engineering and Construction (AEC) industry. Only if three-dimensional reconstructions require a limited time, the creation of consecutive datasets, portraying the site in subsequent phases, becomes feasible. Moreover, a shared coordinate system between all datasets is essential for monitoring purposes. In this work, a new photogrammetric framework is presented to shift from the current error-prone and tedious manual geo-referencing process to a semi-automated one. The fundament of the method is an accurately processed reference module that repeatedly serves as the starting point for processing subsequent image datasets. By means of overlap between pictures in both datasets, the coordinate system, incorporated in the reference module, is inherited by the subsequent datasets, hence bypassing the indication process. The proposed procedure is able to outperform current methods, while requiring less time considered over all consecutive datasets. In our experiments, we compared an unaltered part of two subsequent datasets, each of them processed via the traditional and our proposed method. The obtained mean disparity was 9 mm, while for the manual approach it was 16 mm. Especially for comparative analyses, the proposed approach yields excellent results as every dataset is registered exactly the same, whereas results diverge more when following manual methods. In conclusion, our approach is favourable over the current one, especially for a multitude of consecutive site reconstructions, as no ground control points (GCPs) must be indicated in each separate subsequent dataset, while yielding similar to even better results.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2072-4292
2072-4292
DOI:10.3390/rs12121928