Intelligent motion control of voice coil motor using PID-based fuzzy neural network with optimized membership function

Purpose The purpose of this paper is to develop a proportional-integral-derivative-based fuzzy neural network (PIDFNN) with elitist bacterial foraging optimization (EBFO)-based optimal membership functions (PIDFNN-EBFO) position controller to control the voice coil motor (VCM) for tracking reference...

Full description

Saved in:
Bibliographic Details
Published inEngineering computations Vol. 33; no. 8; pp. 2302 - 2319
Main Authors Chen, Syuan-Yi, Lee, Cheng-Yen, Wu, Chien-Hsun, Hung, Yi-Hsuan
Format Journal Article
LanguageEnglish
Published Bradford Emerald Group Publishing Limited 07.11.2016
Subjects
Online AccessGet full text
ISSN0264-4401
1758-7077
DOI10.1108/EC-08-2015-0250

Cover

More Information
Summary:Purpose The purpose of this paper is to develop a proportional-integral-derivative-based fuzzy neural network (PIDFNN) with elitist bacterial foraging optimization (EBFO)-based optimal membership functions (PIDFNN-EBFO) position controller to control the voice coil motor (VCM) for tracking reference trajectory accurately. Design/methodology/approach Because the control characteristics of the VCM are highly nonlinear and time varying, a PIDFNN, which integrates adaptive PID control with fuzzy rules, is proposed to control the mover position of the VCM. Moreover, an EBFO algorithm is further proposed to find the initial optimal fuzzy membership functions for the PIDFNN controller. Findings Due to the gradient descent method used in back propagation (BP) to derive the on-line learning algorithm for the PIDFNN, it may reach the local optimal solution due to the inappropriate initial values. Hence, a hybrid learning method, which includes BP and EBFO algorithms, is proposed to improve the learning performance of the PIDFNN controller. Research limitations/implications Future work will consider reducing the computational burden of bacterial foraging optimization algorithm for on-line parameters optimization. Practical implications The real-time control system is implemented on a 32-bit floating-point digital signal processor (DSP). The experimental results demonstrate the favorable effectiveness of the proposed PIDFNN-EBFO controlled VCM system. Originality/value A new PIDFNN-EBFO control scheme is proposed and implemented via DSP for real-time VCM position control. The experimental results show the superior control performance of the proposed PIDFNN-EBFO compared with the other control systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0264-4401
1758-7077
DOI:10.1108/EC-08-2015-0250