3D Printing of Covalent Organic Frameworks: A Microfluidic‐Based System to Manufacture Binder‐Free Macroscopic Monoliths
Covalent organic frameworks (COFs) have witnessed outstanding developments in the past 15 years, particularly in optimizing their pore structures, linkages, and variety of monomers used in their synthesis. Yet, a significant challenge remains unaddressed: the processability of COFs into macroscopic...
Saved in:
Published in | Advanced functional materials Vol. 34; no. 17 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.202314634 |
Cover
Summary: | Covalent organic frameworks (COFs) have witnessed outstanding developments in the past 15 years, particularly in optimizing their pore structures, linkages, and variety of monomers used in their synthesis. Yet, a significant challenge remains unaddressed: the processability of COFs into macroscopic architectures with arbitrary shapes, as they are typically obtained as unprocessable powders. This study presents a novel strategy to address this issue by developing a 3D printable ink comprising a colloidal water suspension of COF nanoparticles. A microfluidic device is engineered that provides precise control over the gelation process of the COF‐based ink, allowing for a layer‐by‐layer fabrication. As a result, the direct production of large‐scale binder‐free COF architectures from digital designs is achieved at room temperature and atmospheric pressure while eliminating the use of toxic organic solvents. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1616-301X 1616-3028 |
DOI: | 10.1002/adfm.202314634 |