Emerging Memory Technologies: Recent Trends and Prospects

This tutorial introduces the basics of emerging nonvolatile memory (NVM) technologies including spin-transfer-torque magnetic random access memory (STTMRAM), phase-change random access memory (PCRAM), and resistive random access memory (RRAM). Emerging NVM cell characteristics are summarized, and de...

Full description

Saved in:
Bibliographic Details
Published inIEEE solid state circuits magazine Vol. 8; no. 2; pp. 43 - 56
Main Authors Yu, Shimeng, Chen, Pai-Yu
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1943-0582
1943-0590
DOI10.1109/MSSC.2016.2546199

Cover

Abstract This tutorial introduces the basics of emerging nonvolatile memory (NVM) technologies including spin-transfer-torque magnetic random access memory (STTMRAM), phase-change random access memory (PCRAM), and resistive random access memory (RRAM). Emerging NVM cell characteristics are summarized, and device-level engineering trends are discussed. Emerging NVM array architectures are introduced, including the one-transistor-one-resistor (1T1R) array and the cross-point array with selectors. Design challenges such as scaling the write current and minimizing the sneak path current in cross-point array are analyzed. Recent progress on megabit-to gigabit-level prototype chip demonstrations is summarized. Finally, the prospective applications of emerging NVM are discussed, ranging from the last-level cache to the storage-class memory in the memory hierarchy. Topics of three-dimensional (3D) integration and radiation-hard NVM are discussed. Novel applications beyond the conventional memory applications are also surveyed, including physical unclonable function for hardware security, reconfigurable routing switch for field-programmable gate array (FPGA), logic-in-memory and nonvolatile cache/register/flip-flop for nonvolatile processor, and synaptic device for neuro-inspired computing.
AbstractList This tutorial introduces the basics of emerging nonvolatile memory (NVM) technologies including spin-transfer-torque magnetic random access memory (STTMRAM), phase-change random access memory (PCRAM), and resistive random access memory (RRAM). Emerging NVM cell characteristics are summarized, and device-level engineering trends are discussed. Emerging NVM array architectures are introduced, including the onetransistor?one-resistor (1T1R) array and the cross-point array with selectors. Design challenges such as scaling the write current and minimizing the sneak path current in cross-point array are analyzed. Recent progress on megabit-to gigabit-level prototype chip demonstrations is summarized. Finally, the prospective applications of emerging NVM are discussed, ranging from the last-level cache to the storage-class memory in the memory hierarchy. Topics of three-dimensional (3D) integration and radiation-hard NVM are discussed. Novel applications beyond the conventional memory applications are also surveyed, including physical unclonable function for hardware security, reconfigurable routing switch for field-programmable gate array (FPGA), logic-in-memory and nonvolatile cache/register/flip-flop for nonvolatile processor, and synaptic device for neuro-inspired computing.
This tutorial introduces the basics of emerging nonvolatile memory (NVM) technologies including spin-transfer-torque magnetic random access memory (STTMRAM), phase-change random access memory (PCRAM), and resistive random access memory (RRAM). Emerging NVM cell characteristics are summarized, and device-level engineering trends are discussed. Emerging NVM array architectures are introduced, including the one-transistor-one-resistor (1T1R) array and the cross-point array with selectors. Design challenges such as scaling the write current and minimizing the sneak path current in cross-point array are analyzed. Recent progress on megabit-to gigabit-level prototype chip demonstrations is summarized. Finally, the prospective applications of emerging NVM are discussed, ranging from the last-level cache to the storage-class memory in the memory hierarchy. Topics of three-dimensional (3D) integration and radiation-hard NVM are discussed. Novel applications beyond the conventional memory applications are also surveyed, including physical unclonable function for hardware security, reconfigurable routing switch for field-programmable gate array (FPGA), logic-in-memory and nonvolatile cache/register/flip-flop for nonvolatile processor, and synaptic device for neuro-inspired computing.
Author Chen, Pai-Yu
Yu, Shimeng
Author_xml – sequence: 1
  givenname: Shimeng
  surname: Yu
  fullname: Yu, Shimeng
  email: shimengy@asu.edu
  organization: School of Electrical, Computer, and Energy Engineering, Arizona State University, Arizona USA
– sequence: 2
  givenname: Pai-Yu
  surname: Chen
  fullname: Chen, Pai-Yu
  organization: School of Electrical, Computer, and Energy Engineering, Arizona State University, Arizona USA
BookMark eNp9kD9PwzAQxS1UJNrCB0AskVhYUnxOHMdsqCp_pFYgmt1ynGtJldjFTod-e1IVdejA9G54v7t3b0QG1lkk5BboBIDKx8VyOZ0wCtmE8TQDKS_IEGSaxJRLOjjNObsioxA2lGY85WxI5KxFv67tOlpg6_w-KtB8W9e4dY3hKfpCg7aLCo-2CpG2VfTpXdii6cI1uVzpJuDNn45J8TIrpm_x_OP1ffo8j01CRReDNtAn7KWSkrMM8xKErjIuE0NLWq6S0pgMSpPzTBstWMVYTnUiMyqg1MmYPBzXbr372WHoVFsHg02jLbpdUJAzzpkEyHvr_Zl143be9uEUCCmphBRk74Kjy_SfBI8rtfV1q_1eAVWHLtWhS3XoUv112TPijDF1p7va2c7ruvmXvDuSNSKeLolUcpqL5BchVIH5
CODEN SMCOCC
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3511492
crossref_primary_10_1109_MCAS_2021_3092533
crossref_primary_10_1088_1361_6528_ab4079
crossref_primary_10_1109_JEDS_2021_3095389
crossref_primary_10_3389_fnbot_2022_948386
crossref_primary_10_1109_JIOT_2023_3307405
crossref_primary_10_3390_electronics11071084
crossref_primary_10_1038_s41377_020_0325_9
crossref_primary_10_3390_jlpea14010003
crossref_primary_10_1016_j_apsusc_2021_150685
crossref_primary_10_1016_j_mejo_2022_105638
crossref_primary_10_1109_TCSI_2018_2874880
crossref_primary_10_1039_C8TC04355H
crossref_primary_10_1109_TCAD_2018_2789723
crossref_primary_10_3390_mi12111277
crossref_primary_10_1002_aisy_202100258
crossref_primary_10_1145_3325067
crossref_primary_10_1109_JSSC_2020_3045369
crossref_primary_10_1109_MNANO_2022_3141514
crossref_primary_10_1145_3145478
crossref_primary_10_1145_3131848
crossref_primary_10_1016_j_mtadv_2023_100393
crossref_primary_10_1109_TCSII_2023_3340112
crossref_primary_10_1088_1361_6641_ac41e4
crossref_primary_10_1109_LCOMM_2022_3148292
crossref_primary_10_1103_PhysRevMaterials_7_094001
crossref_primary_10_1126_science_abj9979
crossref_primary_10_1063_5_0221825
crossref_primary_10_1109_TED_2019_2906249
crossref_primary_10_1109_TCE_2020_2981618
crossref_primary_10_1002_aelm_201800914
crossref_primary_10_1007_s00339_019_2865_5
crossref_primary_10_1109_TCAD_2021_3068704
crossref_primary_10_1063_5_0052693
crossref_primary_10_1007_s43207_019_00006_y
crossref_primary_10_1021_acs_nanolett_9b03792
crossref_primary_10_1016_j_sse_2021_108220
crossref_primary_10_1109_TC_2021_3068577
crossref_primary_10_3390_electronics9050704
crossref_primary_10_1109_LED_2018_2821093
crossref_primary_10_1109_TMAT_2024_3484369
crossref_primary_10_4028_p_TBXv2r
crossref_primary_10_1109_LCOMM_2023_3234247
crossref_primary_10_1088_1361_6463_ac0a09
crossref_primary_10_1116_1_5138989
crossref_primary_10_1109_TETC_2019_2960375
crossref_primary_10_1109_JSSC_2023_3236566
crossref_primary_10_1109_TC_2018_2870380
crossref_primary_10_1038_s41578_018_0076_x
crossref_primary_10_1002_aelm_201800143
crossref_primary_10_1109_TMAG_2023_3282804
crossref_primary_10_1080_14686996_2023_2196240
crossref_primary_10_1109_TVLSI_2023_3336379
crossref_primary_10_1109_TCSI_2018_2811643
crossref_primary_10_3390_electronics13214275
crossref_primary_10_1002_aisy_202200338
crossref_primary_10_1109_TNS_2017_2700434
crossref_primary_10_1016_j_lfs_2021_119272
crossref_primary_10_7567_JJAP_57_04FE15
crossref_primary_10_1063_5_0135185
crossref_primary_10_1016_j_sse_2021_108040
crossref_primary_10_1063_5_0160380
crossref_primary_10_3390_electronics10050530
crossref_primary_10_1109_JXCDC_2022_3219731
crossref_primary_10_1016_j_jmst_2024_02_072
crossref_primary_10_1109_TED_2021_3064788
crossref_primary_10_1109_TMAG_2021_3069372
crossref_primary_10_1109_TMAG_2023_3299273
crossref_primary_10_1109_TCAD_2022_3169458
crossref_primary_10_1002_aisy_202000206
crossref_primary_10_1109_TNANO_2023_3341414
crossref_primary_10_1007_s10825_017_1098_0
crossref_primary_10_1109_TCSI_2022_3140769
crossref_primary_10_1002_adfm_202003683
crossref_primary_10_1109_JPROC_2018_2790840
crossref_primary_10_1109_TCAD_2019_2927520
crossref_primary_10_1109_JETCAS_2022_3171765
crossref_primary_10_1002_admt_202000915
crossref_primary_10_1109_TCAD_2020_3006188
crossref_primary_10_1049_el_2020_1946
crossref_primary_10_1038_natrevmats_2018_9
crossref_primary_10_1007_s11664_017_5914_x
crossref_primary_10_1088_1361_6528_abe894
crossref_primary_10_1109_TED_2020_3009623
crossref_primary_10_1103_PhysRevApplied_23_014071
crossref_primary_10_1145_3670404
crossref_primary_10_1109_TC_2020_3000218
crossref_primary_10_1002_advs_202301043
crossref_primary_10_1002_aisy_201900189
crossref_primary_10_1109_TCAD_2020_2998779
crossref_primary_10_1109_TED_2017_2665642
crossref_primary_10_1038_s41699_024_00522_4
crossref_primary_10_1109_TCSII_2021_3108148
crossref_primary_10_1109_TED_2021_3072610
crossref_primary_10_3390_electronics12122709
crossref_primary_10_1007_s11432_021_3220_0
crossref_primary_10_3390_electronics10243072
crossref_primary_10_1109_ACCESS_2021_3121011
crossref_primary_10_1109_TVLSI_2022_3157270
crossref_primary_10_1007_s40820_021_00784_3
crossref_primary_10_1109_JSSC_2022_3140753
crossref_primary_10_1109_LSSC_2020_3034641
crossref_primary_10_1016_j_mejo_2024_106133
crossref_primary_10_1109_TCSI_2024_3507932
crossref_primary_10_1145_3510851
crossref_primary_10_7567_JJAP_56_04CE08
crossref_primary_10_1109_TED_2022_3162176
crossref_primary_10_1063_1_5131733
crossref_primary_10_1088_1361_6528_acaf32
crossref_primary_10_1109_TED_2018_2873738
crossref_primary_10_1109_TC_2018_2871683
crossref_primary_10_1063_5_0003840
crossref_primary_10_1186_s11671_019_2956_4
crossref_primary_10_3389_fnano_2021_649560
crossref_primary_10_1088_1361_6528_28_5_055204
crossref_primary_10_1088_1402_4896_ac9dcd
crossref_primary_10_1007_s12596_022_01058_w
crossref_primary_10_1109_TC_2020_2990884
crossref_primary_10_1021_acs_nanolett_4c05731
crossref_primary_10_1109_TNANO_2020_3006114
crossref_primary_10_1109_ACCESS_2024_3373311
crossref_primary_10_1109_TNANO_2021_3066319
crossref_primary_10_1016_j_matpr_2021_01_473
crossref_primary_10_1038_s41563_018_0257_4
crossref_primary_10_1109_LED_2018_2833149
crossref_primary_10_1186_s11671_023_03881_x
crossref_primary_10_1038_s41928_020_0372_5
crossref_primary_10_1140_epje_s10189_023_00300_y
crossref_primary_10_3390_electronics10151842
crossref_primary_10_1016_j_sysarc_2024_103137
crossref_primary_10_1002_aelm_202300815
crossref_primary_10_1109_TCSI_2022_3199440
crossref_primary_10_1016_j_mseb_2023_116619
crossref_primary_10_1007_s11265_020_01562_x
crossref_primary_10_1088_2634_4386_acb965
crossref_primary_10_1109_JXCDC_2023_3320056
crossref_primary_10_1186_s11671_018_2619_x
crossref_primary_10_1039_D0TC01076F
crossref_primary_10_1021_acsnano_4c09421
crossref_primary_10_1109_LED_2019_2898275
crossref_primary_10_1049_iet_cdt_2017_0089
crossref_primary_10_1002_advs_201900024
crossref_primary_10_1038_s41565_020_0647_z
crossref_primary_10_3390_fi12070113
crossref_primary_10_1002_adfm_202304242
crossref_primary_10_3390_magnetochemistry7030037
crossref_primary_10_1002_pssa_202400743
crossref_primary_10_1021_acsami_0c21156
crossref_primary_10_1145_3485824
crossref_primary_10_1109_LED_2017_2730959
crossref_primary_10_1016_j_jallcom_2024_175103
crossref_primary_10_1109_TNANO_2024_3485213
crossref_primary_10_1145_3473036
crossref_primary_10_3390_nano10091634
crossref_primary_10_1109_ACCESS_2023_3241146
crossref_primary_10_1109_MDAT_2021_3102013
crossref_primary_10_1109_TCSII_2020_3026950
crossref_primary_10_1038_s41928_017_0006_8
crossref_primary_10_1109_TCAD_2023_3267713
crossref_primary_10_1109_TCSII_2021_3059031
crossref_primary_10_3390_electronics10182222
crossref_primary_10_1039_D1CS00236H
crossref_primary_10_1002_pssr_202400424
crossref_primary_10_1186_s40580_025_00480_7
crossref_primary_10_1002_adma_202001943
crossref_primary_10_1016_j_device_2024_100509
crossref_primary_10_1515_nanoph_2022_0089
crossref_primary_10_1007_s13389_020_00223_w
crossref_primary_10_1002_aisy_202000011
crossref_primary_10_1103_PhysRevMaterials_6_105002
crossref_primary_10_3390_electronics12092142
crossref_primary_10_1109_ACCESS_2025_3531338
crossref_primary_10_1109_TNS_2021_3134685
crossref_primary_10_1109_JXCDC_2019_2930284
crossref_primary_10_1126_sciadv_abe1341
crossref_primary_10_1007_s10832_017_0095_9
crossref_primary_10_1002_adfm_201904602
crossref_primary_10_1007_s11432_022_3627_8
crossref_primary_10_1016_j_sse_2023_108667
crossref_primary_10_1109_TED_2020_2969401
crossref_primary_10_1109_TMAG_2017_2766220
crossref_primary_10_1088_1742_6596_1828_1_012065
crossref_primary_10_1016_j_mtla_2023_101885
crossref_primary_10_1109_TCAD_2021_3058959
crossref_primary_10_1002_aisy_202000149
crossref_primary_10_1109_TCSI_2017_2755123
crossref_primary_10_1109_TCSI_2021_3139736
crossref_primary_10_1088_1361_6463_aaa1b9
crossref_primary_10_1109_TCSI_2019_2958568
crossref_primary_10_1109_TCSI_2022_3185135
crossref_primary_10_1186_s40580_024_00463_0
crossref_primary_10_1587_elex_16_20190250
crossref_primary_10_1116_6_0002677
crossref_primary_10_1126_sciadv_aay5141
crossref_primary_10_1007_s12274_022_4259_9
crossref_primary_10_35848_1347_4065_ad2139
crossref_primary_10_1002_admi_202200713
crossref_primary_10_1364_OL_44_001821
crossref_primary_10_1109_TETC_2021_3115495
crossref_primary_10_1145_3365837
crossref_primary_10_1016_j_jallcom_2025_179690
crossref_primary_10_1038_s41699_021_00236_x
crossref_primary_10_1109_TCAD_2020_3025063
crossref_primary_10_1049_iet_cdt_2019_0092
crossref_primary_10_3390_electronics9040626
crossref_primary_10_1109_ACCESS_2020_3011647
crossref_primary_10_1360_SSI_2024_0078
crossref_primary_10_1063_5_0140695
crossref_primary_10_3390_jlpea12010002
crossref_primary_10_1109_TCAD_2018_2857261
crossref_primary_10_1109_TVLSI_2019_2917764
crossref_primary_10_1007_s42514_020_00019_8
crossref_primary_10_1109_TDMR_2023_3248615
crossref_primary_10_1109_TCSI_2017_2649572
crossref_primary_10_1038_nature25747
crossref_primary_10_1038_s41524_017_0059_2
crossref_primary_10_1109_TCSI_2018_2854277
crossref_primary_10_1145_3604589
crossref_primary_10_1002_pssr_201900204
crossref_primary_10_1063_5_0085045
crossref_primary_10_1109_TED_2022_3176834
crossref_primary_10_1002_adfm_202107385
crossref_primary_10_1007_s11390_020_0780_z
crossref_primary_10_1109_LED_2023_3290681
crossref_primary_10_1021_acsnano_4c11898
crossref_primary_10_1002_aisy_202100054
crossref_primary_10_1109_TCAD_2022_3158832
crossref_primary_10_1145_3609115
crossref_primary_10_1002_adma_202108025
crossref_primary_10_1109_MSSC_2017_2745798
crossref_primary_10_1088_1361_6641_ac1b11
crossref_primary_10_7498_aps_71_20220666
crossref_primary_10_1109_TVLSI_2017_2785740
crossref_primary_10_1016_j_sysarc_2022_102532
crossref_primary_10_1039_D3TC03026A
crossref_primary_10_3390_app7090929
crossref_primary_10_3390_electronics10091111
crossref_primary_10_1109_TCAD_2023_3240659
crossref_primary_10_3389_fnins_2021_661667
crossref_primary_10_1002_aisy_202200353
crossref_primary_10_1002_advs_202002251
crossref_primary_10_1109_TNANO_2023_3295093
crossref_primary_10_1088_1361_6463_aae223
crossref_primary_10_1021_acs_nanolett_0c05051
crossref_primary_10_1109_TED_2022_3159767
crossref_primary_10_1002_aisy_202000055
crossref_primary_10_1109_ACCESS_2019_2940211
crossref_primary_10_1109_TCAD_2020_3012250
crossref_primary_10_1587_transele_E101_C_423
crossref_primary_10_7567_1882_0786_ab42d0
crossref_primary_10_1002_aelm_202001241
crossref_primary_10_1016_j_neucom_2019_04_031
crossref_primary_10_1002_admt_202300676
crossref_primary_10_1021_acsanm_3c06263
crossref_primary_10_1088_1361_6641_ac251b
crossref_primary_10_1109_TDMR_2022_3213191
crossref_primary_10_1088_1674_1056_abd7dc
crossref_primary_10_1515_itit_2023_0019
crossref_primary_10_1002_cta_2418
crossref_primary_10_1109_TETCI_2020_3005703
crossref_primary_10_1063_1_5124915
crossref_primary_10_3390_nano14020210
crossref_primary_10_1002_smll_202408618
crossref_primary_10_1145_3451342
crossref_primary_10_1039_D4NR02096K
crossref_primary_10_3390_electronics12102297
crossref_primary_10_1002_admi_201700959
crossref_primary_10_1109_TDMR_2022_3201754
crossref_primary_10_1109_TVLSI_2016_2645384
crossref_primary_10_3389_fnins_2022_941753
crossref_primary_10_1088_1361_6463_aaa559
crossref_primary_10_1007_s10825_017_1062_z
crossref_primary_10_1002_aelm_202201090
crossref_primary_10_1016_j_jallcom_2019_07_050
crossref_primary_10_1109_LED_2020_3046914
crossref_primary_10_1109_MDAT_2020_3016587
crossref_primary_10_1109_MNANO_2021_3126093
crossref_primary_10_1002_adfm_202314565
Cites_doi 10.1109/JPROC.2012.2190369
10.1109/IEDM.2015.7409718
10.1109/ISSCC.2010.5433916
10.1109/ISSCC.2016.7417941
10.1109/ISSCC.2014.6757459
10.1109/ISSCC.2015.7063054
10.1109/IEDM.2015.7409789
10.1109/ISSCC.2011.5746281
10.1145/2464996.2465004
10.1145/2333660.2333712
10.1063/1.4870917
10.1109/IEDM.2007.4418973
10.1109/ISSCC.2012.6177078
10.1038/nnano.2015.29
10.1109/IEDM.2007.4419061
10.1063/1.4875748
10.1109/IEDM.2014.7046994
10.1109/VLSIT.2014.6894366
10.1109/ISSCC.2012.6177067
10.1109/IEDM.2013.6724732
10.1109/LED.2014.2385870
10.1109/ISSCC.2014.6757458
10.1109/IEDM.2015.7409668
10.1116/1.4889999
10.1109/JPROC.2010.2070050
10.1109/IEDM.2012.6478967
10.1109/IEDM.2011.6131654
10.1109/IEDM.2011.6131478
10.1109/LED.2015.2496257
10.1109/ISSCC.2014.6757460
10.1109/TED.2010.2062187
10.1109/ISSCC.2015.7062960
10.1109/ISSCC.2013.6487696
10.1109/ISSCC.2014.6757457
10.1109/TED.2012.2231683
10.1109/TVLSI.2010.2063444
10.1088/0957-4484/24/38/382001
10.1145/1669112.1669117
10.1109/IEDM.2011.6131653
10.1109/IEDM.2014.7046995
10.1145/2228360.2228447
10.1109/ISSCC.2012.6176872
10.1109/VLSIT.2007.4339708
10.1109/IEDM.2008.4796680
10.1109/TNS.2014.2321833
10.1109/ISSCC.2010.5433948
10.1109/JSSC.2012.2235013
10.1109/VLSIT.2010.5556229
10.1109/ISSCC.2015.7062963
10.1147/rd.524.0439
10.1109/VLSIC.2010.5560286
10.1109/TED.2015.2492421
10.1109/JETCAS.2015.2426531
10.1109/LED.2010.2078794
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/MSSC.2016.2546199
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1943-0590
EndPage 56
ExternalDocumentID 4098367851
10_1109_MSSC_2016_2546199
7495087
Genre orig-research
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
L7M
RIG
ID FETCH-LOGICAL-c307t-1ac11101acd99526e8b17ad6593c0b0bf3bcc61bc856aca72d2280a396071ba3
IEDL.DBID RIE
ISSN 1943-0582
IngestDate Sun Sep 28 11:30:46 EDT 2025
Mon Jun 30 03:19:38 EDT 2025
Wed Oct 01 03:50:46 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Wed Aug 27 02:49:47 EDT 2025
IsPeerReviewed false
IsScholarly false
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c307t-1ac11101acd99526e8b17ad6593c0b0bf3bcc61bc856aca72d2280a396071ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1799091419
PQPubID 85511
PageCount 14
ParticipantIDs crossref_primary_10_1109_MSSC_2016_2546199
ieee_primary_7495087
proquest_journals_1799091419
crossref_citationtrail_10_1109_MSSC_2016_2546199
proquest_miscellaneous_1825529118
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 20160101
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE solid state circuits magazine
PublicationTitleAbbrev MSSC
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
ref59
ref15
ref58
ref14
ref53
ref52
ref11
ref54
ref10
burr (ref32) 0
ref19
ref18
yu (ref44) 0
hayakawa (ref64) 0
lee (ref72) 0
wong (ref4) 0; 100
ref46
ref45
ref47
chen (ref20) 0
ref42
ref41
chang (ref48) 0
(ref50) 0
ref8
ref7
ref9
ref3
ref6
ref5
jo (ref36) 0
jang (ref55) 0
ref34
ref37
kau (ref35) 0
ref75
ref31
ref74
ref30
ref33
ref1
ref39
chang (ref49) 0
ref38
cheng (ref13) 0
ref71
(ref51) 2015
ref70
ref73
liang (ref16) 0
ref68
ref24
ref67
(ref23) 2011
ref26
ref69
ref25
ref63
ref66
ref65
ref21
li (ref22) 0
ref28
ref27
ref29
(ref40) 2015
khwa (ref17) 0
yu (ref43) 0
chen (ref61) 0
ref60
ref62
zhu (ref2) 0; 96
References_xml – volume: 100
  start-page: 1951
  year: 0
  ident: ref4
  article-title: Metal-oxide RRAM
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2012.2190369
– ident: ref75
  doi: 10.1109/IEDM.2015.7409718
– ident: ref45
  doi: 10.1109/ISSCC.2010.5433916
– ident: ref58
  doi: 10.1109/ISSCC.2016.7417941
– start-page: 14t
  year: 0
  ident: ref64
  article-title: Highly reliable TaOx ReRAM with centralized filament for 28-nm embedded application
  publication-title: Proc IEEE Symp VLSI Technology
– ident: ref8
  doi: 10.1109/ISSCC.2014.6757459
– start-page: 66t
  year: 0
  ident: ref32
  article-title: Recovery dynamics and fast (sub-50ns) read operation with access devices for 3D crosspoint memory based on mixed-ionic-electronic-conduction (MIEC)
  publication-title: Proc IEEE Symp VLSI Technology
– ident: ref70
  doi: 10.1109/ISSCC.2015.7063054
– ident: ref12
  doi: 10.1109/IEDM.2015.7409789
– ident: ref47
  doi: 10.1109/ISSCC.2011.5746281
– ident: ref6
  doi: 10.1145/2464996.2465004
– start-page: 31.1.1
  year: 0
  ident: ref13
  article-title: A thermally robust phase change memory by engineering the Ge/N concentration in (Ge, N)xSbyTez phase change material
  publication-title: Proc IEEE Int Electron Devices Meeting
– ident: ref28
  doi: 10.1145/2333660.2333712
– ident: ref10
  doi: 10.1063/1.4870917
– ident: ref14
  doi: 10.1109/IEDM.2007.4418973
– start-page: 1
  year: 0
  ident: ref35
  article-title: A stackable cross point phase change memory
  publication-title: Proc IEEE Int Electron Devices Meeting
– start-page: 6.7.1
  year: 0
  ident: ref36
  article-title: 3D-stackable crossbar resistive memory based on field assisted superlinear threshold (FAST) selector
  publication-title: Proc IEEE Int Electron Devices Meeting
– volume: 96
  start-page: 1786
  year: 0
  ident: ref2
  article-title: Magnetoresistive random access memory: the path to competitiveness and scalability
  publication-title: Proc IEEE
– start-page: 10.1.1
  year: 0
  ident: ref20
  article-title: Improvement of data retention in HfO2/Hf 1T1R RRAM cell under low operating current
  publication-title: Proc IEEE Int Electron Devices Meeting
– start-page: 26.1.1
  year: 0
  ident: ref44
  article-title: Fully functional perpendicular STT-MRAM macro embedded in 40 nm logic for energy-efficient IOT applications
  publication-title: Proc IEEE Int Electron Devices Meeting
– ident: ref39
  doi: 10.1109/ISSCC.2012.6177078
– ident: ref1
  doi: 10.1038/nnano.2015.29
– ident: ref59
  doi: 10.1109/IEDM.2007.4419061
– start-page: 434
  year: 0
  ident: ref48
  article-title: A 0.5V 4Mb logic-process compatible embedded resistive RAM (Re-RAM) in 65 nm CMOS using low-voltage current-mode sensing scheme with 45ns random read time
  publication-title: Proc IEEE Int Solid-State Circuits Conf
– ident: ref62
  doi: 10.1063/1.4875748
– year: 2015
  ident: ref40
  publication-title: ASU Memory Chip Trend
– start-page: 332
  year: 0
  ident: ref49
  article-title: Embedded 1Mb ReRAM in 28 nm CMOS with 0.27-to-1V read using swing-sample-and-couple sense amplifier and self-boost-write-termination scheme
  publication-title: Proc IEEE Int Solid-State Circuits Conf
– ident: ref24
  doi: 10.1109/IEDM.2014.7046994
– ident: ref11
  doi: 10.1109/VLSIT.2014.6894366
– ident: ref69
  doi: 10.1109/ISSCC.2012.6177067
– ident: ref21
  doi: 10.1109/IEDM.2013.6724732
– ident: ref67
  doi: 10.1109/LED.2014.2385870
– start-page: 134
  year: 0
  ident: ref17
  article-title: A resistance-drift compensation scheme to reduce MLC PCM raw BER by Over 100X for storage class memory applications
  publication-title: Proc IEEE Int Solid-State Circuit Conf
– ident: ref56
  doi: 10.1109/ISSCC.2014.6757458
– ident: ref34
  doi: 10.1109/IEDM.2015.7409668
– ident: ref29
  doi: 10.1116/1.4889999
– ident: ref3
  doi: 10.1109/JPROC.2010.2070050
– ident: ref33
  doi: 10.1109/IEDM.2012.6478967
– ident: ref60
  doi: 10.1109/IEDM.2011.6131654
– ident: ref15
  doi: 10.1109/IEDM.2011.6131478
– start-page: 192
  year: 0
  ident: ref55
  article-title: Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND flash memory
  publication-title: Proc IEEE Symp VLSI Technology
– start-page: 76c
  year: 0
  ident: ref72
  article-title: RRAM-based 7T1R nonvolatile SRAM with 2x reduction in store energy and 94x reduction in restore energy for frequent-off instant-on applications
  publication-title: Proc IEEE Symp VLSI Circuits
– ident: ref66
  doi: 10.1109/LED.2015.2496257
– ident: ref52
  doi: 10.1109/ISSCC.2014.6757460
– start-page: 100
  year: 0
  ident: ref16
  article-title: A 1.4µA reset current phase change memory cell with integrated carbon nanotube electrodes for cross-point memory application
  publication-title: Proc IEEE Symp VLSI Technology
– ident: ref26
  doi: 10.1109/TED.2010.2062187
– ident: ref57
  doi: 10.1109/ISSCC.2015.7062960
– ident: ref73
  doi: 10.1109/ISSCC.2013.6487696
– ident: ref65
  doi: 10.1109/ISSCC.2014.6757457
– ident: ref27
  doi: 10.1109/TED.2012.2231683
– ident: ref68
  doi: 10.1109/TVLSI.2010.2063444
– ident: ref74
  doi: 10.1088/0957-4484/24/38/382001
– ident: ref53
  doi: 10.1145/1669112.1669117
– ident: ref30
  doi: 10.1109/IEDM.2011.6131653
– ident: ref18
  doi: 10.1109/IEDM.2014.7046995
– ident: ref5
  doi: 10.1145/2228360.2228447
– ident: ref46
  doi: 10.1109/ISSCC.2012.6176872
– year: 2015
  ident: ref51
– start-page: 20.7.1
  year: 0
  ident: ref61
  article-title: HfOx based vertical RRAM for cost-effective 3D cross-point architecture without cell selector
  publication-title: Proc IEEE Int Electron Devices Meeting
– ident: ref54
  doi: 10.1109/VLSIT.2007.4339708
– ident: ref9
  doi: 10.1109/IEDM.2008.4796680
– ident: ref63
  doi: 10.1109/TNS.2014.2321833
– ident: ref41
  doi: 10.1109/ISSCC.2010.5433948
– ident: ref37
  doi: 10.1109/JSSC.2012.2235013
– ident: ref31
  doi: 10.1109/VLSIT.2010.5556229
– start-page: 210
  year: 0
  ident: ref50
  article-title: A 130.7 mm 2 2-layer 32Gb ReRAM memory device in 24nm technology
  publication-title: Proc IEEE Int Solid-State Circuits Conf
– ident: ref42
  doi: 10.1109/ISSCC.2015.7062963
– ident: ref7
  doi: 10.1147/rd.524.0439
– year: 2011
  ident: ref23
  publication-title: Predictive Technology Model (PTM)
– ident: ref71
  doi: 10.1109/VLSIC.2010.5560286
– ident: ref38
  doi: 10.1109/TED.2015.2492421
– ident: ref25
  doi: 10.1109/JETCAS.2015.2426531
– ident: ref19
  doi: 10.1109/LED.2010.2078794
– start-page: 1
  year: 0
  ident: ref22
  article-title: Utilizing Sub-5 nm sidewall electrode technology for atomic-scale resistive memory fabrication
  publication-title: Proc IEEE Symp VLSI Technology
– start-page: 224
  year: 0
  ident: ref43
  article-title: Cycling endurance optimization scheme for 1Mb STT-MRAM in 40nm technology
  publication-title: Proc IEEE Int Solid-State Circuits Conf
SSID ssj0065452
Score 2.194494
Snippet This tutorial introduces the basics of emerging nonvolatile memory (NVM) technologies including spin-transfer-torque magnetic random access memory (STTMRAM),...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 43
SubjectTerms Arrays
Computer architecture
Computer memory
Design analysis
Devices
Electrodes
Field programmable gate arrays
Flip-flops
Magnetic tunneling
Microprocessors
Nonvolatile memory
Phase change random access memory
Random access memory
Three dimensional
Trends
Title Emerging Memory Technologies: Recent Trends and Prospects
URI https://ieeexplore.ieee.org/document/7495087
https://www.proquest.com/docview/1799091419
https://www.proquest.com/docview/1825529118
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1943-0590
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065452
  issn: 1943-0582
  databaseCode: RIE
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-2PemDX1OcTqngk9gtXdu08U3EMYSJsAl7K0kaX5ROtvZB_3rv0g9FRXxqoZc05JLL5T5-B3AuUkOwJ75rmFAuVTlypYqUG2tK69SCSVvubXrPJ4_B3SJctOCyyYUxxtjgMzOgV-vLT5e6IFPZMAqoZmnUhnYUiTJXq5a6nGplWw9yQPFo8ajyYHpMDKez2Q0FcfEBgb-XMK-fZ5AtqvJDEtvjZbwN03pgZVTJ86DI1UC_f8Ns_O_Id2Cr0jOd63Jh7ELLZHuw-QV9sAuCDFJUo8iZUrjtm9OY2fH2fOWgQol9OmXQrCOz1HlYLW1i5nof5uPb-c3ErSopuBr3cO56UqNMY_hIhQhH3MTKi2TKQ-Frpph68pXW3FM6DrnUMhqlhJIjfUHoc0r6B9DJlpk5BEdy1Be1lwZc-YHBb0gkRSzx2icDZG4PWD21ia5QxqnYxUtibxtMJMSNhLiRVNzowUXT5LWE2PiLuEuz2xBWE9uDfs2_pNqE64TA7lAdCjxsddZ8xu1DPhGZmWWBNHhDDkco8eOj33s-hg36f2l16UMnXxXmBPWQXJ3aBfgBINrXlg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAHXgMxGFAkTohu7dqmDTc0MQ1YJ6QNabcqScMF1KE9DvDrsdOuIECIUyvFiaI4cezY_gxwzlNNsCeerR0ubapyZAsZSjtSlNapuCNMubd4wHqP_t04GFfgssyF0Vqb4DPdpF_jy08nakFPZa3Qp5ql4QqsBmhVhHm21lLuMqqWbXzIPkWkRe3Ch-k6vBUPhx0K42JNgn_PgV4_byFTVuWHLDYXTHcL4uXU8riS5-ZiLpvq_Rtq43_nvg2bhaZpXedbYwcqOtuFjS_4gzXg9CRFVYqsmAJu36zyoR3t5ysLVUoc08rDZi2RpdbDdGJSM2d7MOrejDo9u6ilYCs8xXPbFQqlmoOflPOgzXQk3VCkLOCecqQjnzypFHOligImlAjbKeHkCI8T_pwU3j5Us0mmD8ASDDVG5aY-k56vsQ2JBI8EGn7CR_bWwVkubaIKnHEqd_GSGHvD4QlxIyFuJAU36nBRdnnNQTb-Iq7R6paExcLWobHkX1Icw1lCcHeoEPku9jorm_EAkVdEZHqyQBq0kYM2yvzo8PeRT2GtN4r7Sf92cH8E6zSX_A2mAdX5dKGPUSuZyxOzGT8An6ra5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Memory+Technologies%3A+Recent+Trends+and+Prospects&rft.jtitle=IEEE+solid+state+circuits+magazine&rft.au=Yu%2C+Shimeng&rft.au=Pai-Yu%2C+Chen&rft.date=2016-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1943-0582&rft.eissn=1943-0590&rft.volume=8&rft.issue=2&rft.spage=43&rft_id=info:doi/10.1109%2FMSSC.2016.2546199&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4098367851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0582&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0582&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0582&client=summon