Emerging Memory Technologies: Recent Trends and Prospects
This tutorial introduces the basics of emerging nonvolatile memory (NVM) technologies including spin-transfer-torque magnetic random access memory (STTMRAM), phase-change random access memory (PCRAM), and resistive random access memory (RRAM). Emerging NVM cell characteristics are summarized, and de...
Saved in:
Published in | IEEE solid state circuits magazine Vol. 8; no. 2; pp. 43 - 56 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1943-0582 1943-0590 |
DOI | 10.1109/MSSC.2016.2546199 |
Cover
Abstract | This tutorial introduces the basics of emerging nonvolatile memory (NVM) technologies including spin-transfer-torque magnetic random access memory (STTMRAM), phase-change random access memory (PCRAM), and resistive random access memory (RRAM). Emerging NVM cell characteristics are summarized, and device-level engineering trends are discussed. Emerging NVM array architectures are introduced, including the one-transistor-one-resistor (1T1R) array and the cross-point array with selectors. Design challenges such as scaling the write current and minimizing the sneak path current in cross-point array are analyzed. Recent progress on megabit-to gigabit-level prototype chip demonstrations is summarized. Finally, the prospective applications of emerging NVM are discussed, ranging from the last-level cache to the storage-class memory in the memory hierarchy. Topics of three-dimensional (3D) integration and radiation-hard NVM are discussed. Novel applications beyond the conventional memory applications are also surveyed, including physical unclonable function for hardware security, reconfigurable routing switch for field-programmable gate array (FPGA), logic-in-memory and nonvolatile cache/register/flip-flop for nonvolatile processor, and synaptic device for neuro-inspired computing. |
---|---|
AbstractList | This tutorial introduces the basics of emerging nonvolatile memory (NVM) technologies including spin-transfer-torque magnetic random access memory (STTMRAM), phase-change random access memory (PCRAM), and resistive random access memory (RRAM). Emerging NVM cell characteristics are summarized, and device-level engineering trends are discussed. Emerging NVM array architectures are introduced, including the onetransistor?one-resistor (1T1R) array and the cross-point array with selectors. Design challenges such as scaling the write current and minimizing the sneak path current in cross-point array are analyzed. Recent progress on megabit-to gigabit-level prototype chip demonstrations is summarized. Finally, the prospective applications of emerging NVM are discussed, ranging from the last-level cache to the storage-class memory in the memory hierarchy. Topics of three-dimensional (3D) integration and radiation-hard NVM are discussed. Novel applications beyond the conventional memory applications are also surveyed, including physical unclonable function for hardware security, reconfigurable routing switch for field-programmable gate array (FPGA), logic-in-memory and nonvolatile cache/register/flip-flop for nonvolatile processor, and synaptic device for neuro-inspired computing. This tutorial introduces the basics of emerging nonvolatile memory (NVM) technologies including spin-transfer-torque magnetic random access memory (STTMRAM), phase-change random access memory (PCRAM), and resistive random access memory (RRAM). Emerging NVM cell characteristics are summarized, and device-level engineering trends are discussed. Emerging NVM array architectures are introduced, including the one-transistor-one-resistor (1T1R) array and the cross-point array with selectors. Design challenges such as scaling the write current and minimizing the sneak path current in cross-point array are analyzed. Recent progress on megabit-to gigabit-level prototype chip demonstrations is summarized. Finally, the prospective applications of emerging NVM are discussed, ranging from the last-level cache to the storage-class memory in the memory hierarchy. Topics of three-dimensional (3D) integration and radiation-hard NVM are discussed. Novel applications beyond the conventional memory applications are also surveyed, including physical unclonable function for hardware security, reconfigurable routing switch for field-programmable gate array (FPGA), logic-in-memory and nonvolatile cache/register/flip-flop for nonvolatile processor, and synaptic device for neuro-inspired computing. |
Author | Chen, Pai-Yu Yu, Shimeng |
Author_xml | – sequence: 1 givenname: Shimeng surname: Yu fullname: Yu, Shimeng email: shimengy@asu.edu organization: School of Electrical, Computer, and Energy Engineering, Arizona State University, Arizona USA – sequence: 2 givenname: Pai-Yu surname: Chen fullname: Chen, Pai-Yu organization: School of Electrical, Computer, and Energy Engineering, Arizona State University, Arizona USA |
BookMark | eNp9kD9PwzAQxS1UJNrCB0AskVhYUnxOHMdsqCp_pFYgmt1ynGtJldjFTod-e1IVdejA9G54v7t3b0QG1lkk5BboBIDKx8VyOZ0wCtmE8TQDKS_IEGSaxJRLOjjNObsioxA2lGY85WxI5KxFv67tOlpg6_w-KtB8W9e4dY3hKfpCg7aLCo-2CpG2VfTpXdii6cI1uVzpJuDNn45J8TIrpm_x_OP1ffo8j01CRReDNtAn7KWSkrMM8xKErjIuE0NLWq6S0pgMSpPzTBstWMVYTnUiMyqg1MmYPBzXbr372WHoVFsHg02jLbpdUJAzzpkEyHvr_Zl143be9uEUCCmphBRk74Kjy_SfBI8rtfV1q_1eAVWHLtWhS3XoUv112TPijDF1p7va2c7ruvmXvDuSNSKeLolUcpqL5BchVIH5 |
CODEN | SMCOCC |
CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3511492 crossref_primary_10_1109_MCAS_2021_3092533 crossref_primary_10_1088_1361_6528_ab4079 crossref_primary_10_1109_JEDS_2021_3095389 crossref_primary_10_3389_fnbot_2022_948386 crossref_primary_10_1109_JIOT_2023_3307405 crossref_primary_10_3390_electronics11071084 crossref_primary_10_1038_s41377_020_0325_9 crossref_primary_10_3390_jlpea14010003 crossref_primary_10_1016_j_apsusc_2021_150685 crossref_primary_10_1016_j_mejo_2022_105638 crossref_primary_10_1109_TCSI_2018_2874880 crossref_primary_10_1039_C8TC04355H crossref_primary_10_1109_TCAD_2018_2789723 crossref_primary_10_3390_mi12111277 crossref_primary_10_1002_aisy_202100258 crossref_primary_10_1145_3325067 crossref_primary_10_1109_JSSC_2020_3045369 crossref_primary_10_1109_MNANO_2022_3141514 crossref_primary_10_1145_3145478 crossref_primary_10_1145_3131848 crossref_primary_10_1016_j_mtadv_2023_100393 crossref_primary_10_1109_TCSII_2023_3340112 crossref_primary_10_1088_1361_6641_ac41e4 crossref_primary_10_1109_LCOMM_2022_3148292 crossref_primary_10_1103_PhysRevMaterials_7_094001 crossref_primary_10_1126_science_abj9979 crossref_primary_10_1063_5_0221825 crossref_primary_10_1109_TED_2019_2906249 crossref_primary_10_1109_TCE_2020_2981618 crossref_primary_10_1002_aelm_201800914 crossref_primary_10_1007_s00339_019_2865_5 crossref_primary_10_1109_TCAD_2021_3068704 crossref_primary_10_1063_5_0052693 crossref_primary_10_1007_s43207_019_00006_y crossref_primary_10_1021_acs_nanolett_9b03792 crossref_primary_10_1016_j_sse_2021_108220 crossref_primary_10_1109_TC_2021_3068577 crossref_primary_10_3390_electronics9050704 crossref_primary_10_1109_LED_2018_2821093 crossref_primary_10_1109_TMAT_2024_3484369 crossref_primary_10_4028_p_TBXv2r crossref_primary_10_1109_LCOMM_2023_3234247 crossref_primary_10_1088_1361_6463_ac0a09 crossref_primary_10_1116_1_5138989 crossref_primary_10_1109_TETC_2019_2960375 crossref_primary_10_1109_JSSC_2023_3236566 crossref_primary_10_1109_TC_2018_2870380 crossref_primary_10_1038_s41578_018_0076_x crossref_primary_10_1002_aelm_201800143 crossref_primary_10_1109_TMAG_2023_3282804 crossref_primary_10_1080_14686996_2023_2196240 crossref_primary_10_1109_TVLSI_2023_3336379 crossref_primary_10_1109_TCSI_2018_2811643 crossref_primary_10_3390_electronics13214275 crossref_primary_10_1002_aisy_202200338 crossref_primary_10_1109_TNS_2017_2700434 crossref_primary_10_1016_j_lfs_2021_119272 crossref_primary_10_7567_JJAP_57_04FE15 crossref_primary_10_1063_5_0135185 crossref_primary_10_1016_j_sse_2021_108040 crossref_primary_10_1063_5_0160380 crossref_primary_10_3390_electronics10050530 crossref_primary_10_1109_JXCDC_2022_3219731 crossref_primary_10_1016_j_jmst_2024_02_072 crossref_primary_10_1109_TED_2021_3064788 crossref_primary_10_1109_TMAG_2021_3069372 crossref_primary_10_1109_TMAG_2023_3299273 crossref_primary_10_1109_TCAD_2022_3169458 crossref_primary_10_1002_aisy_202000206 crossref_primary_10_1109_TNANO_2023_3341414 crossref_primary_10_1007_s10825_017_1098_0 crossref_primary_10_1109_TCSI_2022_3140769 crossref_primary_10_1002_adfm_202003683 crossref_primary_10_1109_JPROC_2018_2790840 crossref_primary_10_1109_TCAD_2019_2927520 crossref_primary_10_1109_JETCAS_2022_3171765 crossref_primary_10_1002_admt_202000915 crossref_primary_10_1109_TCAD_2020_3006188 crossref_primary_10_1049_el_2020_1946 crossref_primary_10_1038_natrevmats_2018_9 crossref_primary_10_1007_s11664_017_5914_x crossref_primary_10_1088_1361_6528_abe894 crossref_primary_10_1109_TED_2020_3009623 crossref_primary_10_1103_PhysRevApplied_23_014071 crossref_primary_10_1145_3670404 crossref_primary_10_1109_TC_2020_3000218 crossref_primary_10_1002_advs_202301043 crossref_primary_10_1002_aisy_201900189 crossref_primary_10_1109_TCAD_2020_2998779 crossref_primary_10_1109_TED_2017_2665642 crossref_primary_10_1038_s41699_024_00522_4 crossref_primary_10_1109_TCSII_2021_3108148 crossref_primary_10_1109_TED_2021_3072610 crossref_primary_10_3390_electronics12122709 crossref_primary_10_1007_s11432_021_3220_0 crossref_primary_10_3390_electronics10243072 crossref_primary_10_1109_ACCESS_2021_3121011 crossref_primary_10_1109_TVLSI_2022_3157270 crossref_primary_10_1007_s40820_021_00784_3 crossref_primary_10_1109_JSSC_2022_3140753 crossref_primary_10_1109_LSSC_2020_3034641 crossref_primary_10_1016_j_mejo_2024_106133 crossref_primary_10_1109_TCSI_2024_3507932 crossref_primary_10_1145_3510851 crossref_primary_10_7567_JJAP_56_04CE08 crossref_primary_10_1109_TED_2022_3162176 crossref_primary_10_1063_1_5131733 crossref_primary_10_1088_1361_6528_acaf32 crossref_primary_10_1109_TED_2018_2873738 crossref_primary_10_1109_TC_2018_2871683 crossref_primary_10_1063_5_0003840 crossref_primary_10_1186_s11671_019_2956_4 crossref_primary_10_3389_fnano_2021_649560 crossref_primary_10_1088_1361_6528_28_5_055204 crossref_primary_10_1088_1402_4896_ac9dcd crossref_primary_10_1007_s12596_022_01058_w crossref_primary_10_1109_TC_2020_2990884 crossref_primary_10_1021_acs_nanolett_4c05731 crossref_primary_10_1109_TNANO_2020_3006114 crossref_primary_10_1109_ACCESS_2024_3373311 crossref_primary_10_1109_TNANO_2021_3066319 crossref_primary_10_1016_j_matpr_2021_01_473 crossref_primary_10_1038_s41563_018_0257_4 crossref_primary_10_1109_LED_2018_2833149 crossref_primary_10_1186_s11671_023_03881_x crossref_primary_10_1038_s41928_020_0372_5 crossref_primary_10_1140_epje_s10189_023_00300_y crossref_primary_10_3390_electronics10151842 crossref_primary_10_1016_j_sysarc_2024_103137 crossref_primary_10_1002_aelm_202300815 crossref_primary_10_1109_TCSI_2022_3199440 crossref_primary_10_1016_j_mseb_2023_116619 crossref_primary_10_1007_s11265_020_01562_x crossref_primary_10_1088_2634_4386_acb965 crossref_primary_10_1109_JXCDC_2023_3320056 crossref_primary_10_1186_s11671_018_2619_x crossref_primary_10_1039_D0TC01076F crossref_primary_10_1021_acsnano_4c09421 crossref_primary_10_1109_LED_2019_2898275 crossref_primary_10_1049_iet_cdt_2017_0089 crossref_primary_10_1002_advs_201900024 crossref_primary_10_1038_s41565_020_0647_z crossref_primary_10_3390_fi12070113 crossref_primary_10_1002_adfm_202304242 crossref_primary_10_3390_magnetochemistry7030037 crossref_primary_10_1002_pssa_202400743 crossref_primary_10_1021_acsami_0c21156 crossref_primary_10_1145_3485824 crossref_primary_10_1109_LED_2017_2730959 crossref_primary_10_1016_j_jallcom_2024_175103 crossref_primary_10_1109_TNANO_2024_3485213 crossref_primary_10_1145_3473036 crossref_primary_10_3390_nano10091634 crossref_primary_10_1109_ACCESS_2023_3241146 crossref_primary_10_1109_MDAT_2021_3102013 crossref_primary_10_1109_TCSII_2020_3026950 crossref_primary_10_1038_s41928_017_0006_8 crossref_primary_10_1109_TCAD_2023_3267713 crossref_primary_10_1109_TCSII_2021_3059031 crossref_primary_10_3390_electronics10182222 crossref_primary_10_1039_D1CS00236H crossref_primary_10_1002_pssr_202400424 crossref_primary_10_1186_s40580_025_00480_7 crossref_primary_10_1002_adma_202001943 crossref_primary_10_1016_j_device_2024_100509 crossref_primary_10_1515_nanoph_2022_0089 crossref_primary_10_1007_s13389_020_00223_w crossref_primary_10_1002_aisy_202000011 crossref_primary_10_1103_PhysRevMaterials_6_105002 crossref_primary_10_3390_electronics12092142 crossref_primary_10_1109_ACCESS_2025_3531338 crossref_primary_10_1109_TNS_2021_3134685 crossref_primary_10_1109_JXCDC_2019_2930284 crossref_primary_10_1126_sciadv_abe1341 crossref_primary_10_1007_s10832_017_0095_9 crossref_primary_10_1002_adfm_201904602 crossref_primary_10_1007_s11432_022_3627_8 crossref_primary_10_1016_j_sse_2023_108667 crossref_primary_10_1109_TED_2020_2969401 crossref_primary_10_1109_TMAG_2017_2766220 crossref_primary_10_1088_1742_6596_1828_1_012065 crossref_primary_10_1016_j_mtla_2023_101885 crossref_primary_10_1109_TCAD_2021_3058959 crossref_primary_10_1002_aisy_202000149 crossref_primary_10_1109_TCSI_2017_2755123 crossref_primary_10_1109_TCSI_2021_3139736 crossref_primary_10_1088_1361_6463_aaa1b9 crossref_primary_10_1109_TCSI_2019_2958568 crossref_primary_10_1109_TCSI_2022_3185135 crossref_primary_10_1186_s40580_024_00463_0 crossref_primary_10_1587_elex_16_20190250 crossref_primary_10_1116_6_0002677 crossref_primary_10_1126_sciadv_aay5141 crossref_primary_10_1007_s12274_022_4259_9 crossref_primary_10_35848_1347_4065_ad2139 crossref_primary_10_1002_admi_202200713 crossref_primary_10_1364_OL_44_001821 crossref_primary_10_1109_TETC_2021_3115495 crossref_primary_10_1145_3365837 crossref_primary_10_1016_j_jallcom_2025_179690 crossref_primary_10_1038_s41699_021_00236_x crossref_primary_10_1109_TCAD_2020_3025063 crossref_primary_10_1049_iet_cdt_2019_0092 crossref_primary_10_3390_electronics9040626 crossref_primary_10_1109_ACCESS_2020_3011647 crossref_primary_10_1360_SSI_2024_0078 crossref_primary_10_1063_5_0140695 crossref_primary_10_3390_jlpea12010002 crossref_primary_10_1109_TCAD_2018_2857261 crossref_primary_10_1109_TVLSI_2019_2917764 crossref_primary_10_1007_s42514_020_00019_8 crossref_primary_10_1109_TDMR_2023_3248615 crossref_primary_10_1109_TCSI_2017_2649572 crossref_primary_10_1038_nature25747 crossref_primary_10_1038_s41524_017_0059_2 crossref_primary_10_1109_TCSI_2018_2854277 crossref_primary_10_1145_3604589 crossref_primary_10_1002_pssr_201900204 crossref_primary_10_1063_5_0085045 crossref_primary_10_1109_TED_2022_3176834 crossref_primary_10_1002_adfm_202107385 crossref_primary_10_1007_s11390_020_0780_z crossref_primary_10_1109_LED_2023_3290681 crossref_primary_10_1021_acsnano_4c11898 crossref_primary_10_1002_aisy_202100054 crossref_primary_10_1109_TCAD_2022_3158832 crossref_primary_10_1145_3609115 crossref_primary_10_1002_adma_202108025 crossref_primary_10_1109_MSSC_2017_2745798 crossref_primary_10_1088_1361_6641_ac1b11 crossref_primary_10_7498_aps_71_20220666 crossref_primary_10_1109_TVLSI_2017_2785740 crossref_primary_10_1016_j_sysarc_2022_102532 crossref_primary_10_1039_D3TC03026A crossref_primary_10_3390_app7090929 crossref_primary_10_3390_electronics10091111 crossref_primary_10_1109_TCAD_2023_3240659 crossref_primary_10_3389_fnins_2021_661667 crossref_primary_10_1002_aisy_202200353 crossref_primary_10_1002_advs_202002251 crossref_primary_10_1109_TNANO_2023_3295093 crossref_primary_10_1088_1361_6463_aae223 crossref_primary_10_1021_acs_nanolett_0c05051 crossref_primary_10_1109_TED_2022_3159767 crossref_primary_10_1002_aisy_202000055 crossref_primary_10_1109_ACCESS_2019_2940211 crossref_primary_10_1109_TCAD_2020_3012250 crossref_primary_10_1587_transele_E101_C_423 crossref_primary_10_7567_1882_0786_ab42d0 crossref_primary_10_1002_aelm_202001241 crossref_primary_10_1016_j_neucom_2019_04_031 crossref_primary_10_1002_admt_202300676 crossref_primary_10_1021_acsanm_3c06263 crossref_primary_10_1088_1361_6641_ac251b crossref_primary_10_1109_TDMR_2022_3213191 crossref_primary_10_1088_1674_1056_abd7dc crossref_primary_10_1515_itit_2023_0019 crossref_primary_10_1002_cta_2418 crossref_primary_10_1109_TETCI_2020_3005703 crossref_primary_10_1063_1_5124915 crossref_primary_10_3390_nano14020210 crossref_primary_10_1002_smll_202408618 crossref_primary_10_1145_3451342 crossref_primary_10_1039_D4NR02096K crossref_primary_10_3390_electronics12102297 crossref_primary_10_1002_admi_201700959 crossref_primary_10_1109_TDMR_2022_3201754 crossref_primary_10_1109_TVLSI_2016_2645384 crossref_primary_10_3389_fnins_2022_941753 crossref_primary_10_1088_1361_6463_aaa559 crossref_primary_10_1007_s10825_017_1062_z crossref_primary_10_1002_aelm_202201090 crossref_primary_10_1016_j_jallcom_2019_07_050 crossref_primary_10_1109_LED_2020_3046914 crossref_primary_10_1109_MDAT_2020_3016587 crossref_primary_10_1109_MNANO_2021_3126093 crossref_primary_10_1002_adfm_202314565 |
Cites_doi | 10.1109/JPROC.2012.2190369 10.1109/IEDM.2015.7409718 10.1109/ISSCC.2010.5433916 10.1109/ISSCC.2016.7417941 10.1109/ISSCC.2014.6757459 10.1109/ISSCC.2015.7063054 10.1109/IEDM.2015.7409789 10.1109/ISSCC.2011.5746281 10.1145/2464996.2465004 10.1145/2333660.2333712 10.1063/1.4870917 10.1109/IEDM.2007.4418973 10.1109/ISSCC.2012.6177078 10.1038/nnano.2015.29 10.1109/IEDM.2007.4419061 10.1063/1.4875748 10.1109/IEDM.2014.7046994 10.1109/VLSIT.2014.6894366 10.1109/ISSCC.2012.6177067 10.1109/IEDM.2013.6724732 10.1109/LED.2014.2385870 10.1109/ISSCC.2014.6757458 10.1109/IEDM.2015.7409668 10.1116/1.4889999 10.1109/JPROC.2010.2070050 10.1109/IEDM.2012.6478967 10.1109/IEDM.2011.6131654 10.1109/IEDM.2011.6131478 10.1109/LED.2015.2496257 10.1109/ISSCC.2014.6757460 10.1109/TED.2010.2062187 10.1109/ISSCC.2015.7062960 10.1109/ISSCC.2013.6487696 10.1109/ISSCC.2014.6757457 10.1109/TED.2012.2231683 10.1109/TVLSI.2010.2063444 10.1088/0957-4484/24/38/382001 10.1145/1669112.1669117 10.1109/IEDM.2011.6131653 10.1109/IEDM.2014.7046995 10.1145/2228360.2228447 10.1109/ISSCC.2012.6176872 10.1109/VLSIT.2007.4339708 10.1109/IEDM.2008.4796680 10.1109/TNS.2014.2321833 10.1109/ISSCC.2010.5433948 10.1109/JSSC.2012.2235013 10.1109/VLSIT.2010.5556229 10.1109/ISSCC.2015.7062963 10.1147/rd.524.0439 10.1109/VLSIC.2010.5560286 10.1109/TED.2015.2492421 10.1109/JETCAS.2015.2426531 10.1109/LED.2010.2078794 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
DOI | 10.1109/MSSC.2016.2546199 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1943-0590 |
EndPage | 56 |
ExternalDocumentID | 4098367851 10_1109_MSSC_2016_2546199 7495087 |
Genre | orig-research |
GroupedDBID | 0R~ 29I 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE RNS AAYXX CITATION 7SP 8FD L7M RIG |
ID | FETCH-LOGICAL-c307t-1ac11101acd99526e8b17ad6593c0b0bf3bcc61bc856aca72d2280a396071ba3 |
IEDL.DBID | RIE |
ISSN | 1943-0582 |
IngestDate | Sun Sep 28 11:30:46 EDT 2025 Mon Jun 30 03:19:38 EDT 2025 Wed Oct 01 03:50:46 EDT 2025 Thu Apr 24 22:57:15 EDT 2025 Wed Aug 27 02:49:47 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c307t-1ac11101acd99526e8b17ad6593c0b0bf3bcc61bc856aca72d2280a396071ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1799091419 |
PQPubID | 85511 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_MSSC_2016_2546199 ieee_primary_7495087 proquest_journals_1799091419 crossref_citationtrail_10_1109_MSSC_2016_2546199 proquest_miscellaneous_1825529118 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 20160101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE solid state circuits magazine |
PublicationTitleAbbrev | MSSC |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref57 ref56 ref12 ref59 ref15 ref58 ref14 ref53 ref52 ref11 ref54 ref10 burr (ref32) 0 ref19 ref18 yu (ref44) 0 hayakawa (ref64) 0 lee (ref72) 0 wong (ref4) 0; 100 ref46 ref45 ref47 chen (ref20) 0 ref42 ref41 chang (ref48) 0 (ref50) 0 ref8 ref7 ref9 ref3 ref6 ref5 jo (ref36) 0 jang (ref55) 0 ref34 ref37 kau (ref35) 0 ref75 ref31 ref74 ref30 ref33 ref1 ref39 chang (ref49) 0 ref38 cheng (ref13) 0 ref71 (ref51) 2015 ref70 ref73 liang (ref16) 0 ref68 ref24 ref67 (ref23) 2011 ref26 ref69 ref25 ref63 ref66 ref65 ref21 li (ref22) 0 ref28 ref27 ref29 (ref40) 2015 khwa (ref17) 0 yu (ref43) 0 chen (ref61) 0 ref60 ref62 zhu (ref2) 0; 96 |
References_xml | – volume: 100 start-page: 1951 year: 0 ident: ref4 article-title: Metal-oxide RRAM publication-title: Proc IEEE doi: 10.1109/JPROC.2012.2190369 – ident: ref75 doi: 10.1109/IEDM.2015.7409718 – ident: ref45 doi: 10.1109/ISSCC.2010.5433916 – ident: ref58 doi: 10.1109/ISSCC.2016.7417941 – start-page: 14t year: 0 ident: ref64 article-title: Highly reliable TaOx ReRAM with centralized filament for 28-nm embedded application publication-title: Proc IEEE Symp VLSI Technology – ident: ref8 doi: 10.1109/ISSCC.2014.6757459 – start-page: 66t year: 0 ident: ref32 article-title: Recovery dynamics and fast (sub-50ns) read operation with access devices for 3D crosspoint memory based on mixed-ionic-electronic-conduction (MIEC) publication-title: Proc IEEE Symp VLSI Technology – ident: ref70 doi: 10.1109/ISSCC.2015.7063054 – ident: ref12 doi: 10.1109/IEDM.2015.7409789 – ident: ref47 doi: 10.1109/ISSCC.2011.5746281 – ident: ref6 doi: 10.1145/2464996.2465004 – start-page: 31.1.1 year: 0 ident: ref13 article-title: A thermally robust phase change memory by engineering the Ge/N concentration in (Ge, N)xSbyTez phase change material publication-title: Proc IEEE Int Electron Devices Meeting – ident: ref28 doi: 10.1145/2333660.2333712 – ident: ref10 doi: 10.1063/1.4870917 – ident: ref14 doi: 10.1109/IEDM.2007.4418973 – start-page: 1 year: 0 ident: ref35 article-title: A stackable cross point phase change memory publication-title: Proc IEEE Int Electron Devices Meeting – start-page: 6.7.1 year: 0 ident: ref36 article-title: 3D-stackable crossbar resistive memory based on field assisted superlinear threshold (FAST) selector publication-title: Proc IEEE Int Electron Devices Meeting – volume: 96 start-page: 1786 year: 0 ident: ref2 article-title: Magnetoresistive random access memory: the path to competitiveness and scalability publication-title: Proc IEEE – start-page: 10.1.1 year: 0 ident: ref20 article-title: Improvement of data retention in HfO2/Hf 1T1R RRAM cell under low operating current publication-title: Proc IEEE Int Electron Devices Meeting – start-page: 26.1.1 year: 0 ident: ref44 article-title: Fully functional perpendicular STT-MRAM macro embedded in 40 nm logic for energy-efficient IOT applications publication-title: Proc IEEE Int Electron Devices Meeting – ident: ref39 doi: 10.1109/ISSCC.2012.6177078 – ident: ref1 doi: 10.1038/nnano.2015.29 – ident: ref59 doi: 10.1109/IEDM.2007.4419061 – start-page: 434 year: 0 ident: ref48 article-title: A 0.5V 4Mb logic-process compatible embedded resistive RAM (Re-RAM) in 65 nm CMOS using low-voltage current-mode sensing scheme with 45ns random read time publication-title: Proc IEEE Int Solid-State Circuits Conf – ident: ref62 doi: 10.1063/1.4875748 – year: 2015 ident: ref40 publication-title: ASU Memory Chip Trend – start-page: 332 year: 0 ident: ref49 article-title: Embedded 1Mb ReRAM in 28 nm CMOS with 0.27-to-1V read using swing-sample-and-couple sense amplifier and self-boost-write-termination scheme publication-title: Proc IEEE Int Solid-State Circuits Conf – ident: ref24 doi: 10.1109/IEDM.2014.7046994 – ident: ref11 doi: 10.1109/VLSIT.2014.6894366 – ident: ref69 doi: 10.1109/ISSCC.2012.6177067 – ident: ref21 doi: 10.1109/IEDM.2013.6724732 – ident: ref67 doi: 10.1109/LED.2014.2385870 – start-page: 134 year: 0 ident: ref17 article-title: A resistance-drift compensation scheme to reduce MLC PCM raw BER by Over 100X for storage class memory applications publication-title: Proc IEEE Int Solid-State Circuit Conf – ident: ref56 doi: 10.1109/ISSCC.2014.6757458 – ident: ref34 doi: 10.1109/IEDM.2015.7409668 – ident: ref29 doi: 10.1116/1.4889999 – ident: ref3 doi: 10.1109/JPROC.2010.2070050 – ident: ref33 doi: 10.1109/IEDM.2012.6478967 – ident: ref60 doi: 10.1109/IEDM.2011.6131654 – ident: ref15 doi: 10.1109/IEDM.2011.6131478 – start-page: 192 year: 0 ident: ref55 article-title: Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND flash memory publication-title: Proc IEEE Symp VLSI Technology – start-page: 76c year: 0 ident: ref72 article-title: RRAM-based 7T1R nonvolatile SRAM with 2x reduction in store energy and 94x reduction in restore energy for frequent-off instant-on applications publication-title: Proc IEEE Symp VLSI Circuits – ident: ref66 doi: 10.1109/LED.2015.2496257 – ident: ref52 doi: 10.1109/ISSCC.2014.6757460 – start-page: 100 year: 0 ident: ref16 article-title: A 1.4µA reset current phase change memory cell with integrated carbon nanotube electrodes for cross-point memory application publication-title: Proc IEEE Symp VLSI Technology – ident: ref26 doi: 10.1109/TED.2010.2062187 – ident: ref57 doi: 10.1109/ISSCC.2015.7062960 – ident: ref73 doi: 10.1109/ISSCC.2013.6487696 – ident: ref65 doi: 10.1109/ISSCC.2014.6757457 – ident: ref27 doi: 10.1109/TED.2012.2231683 – ident: ref68 doi: 10.1109/TVLSI.2010.2063444 – ident: ref74 doi: 10.1088/0957-4484/24/38/382001 – ident: ref53 doi: 10.1145/1669112.1669117 – ident: ref30 doi: 10.1109/IEDM.2011.6131653 – ident: ref18 doi: 10.1109/IEDM.2014.7046995 – ident: ref5 doi: 10.1145/2228360.2228447 – ident: ref46 doi: 10.1109/ISSCC.2012.6176872 – year: 2015 ident: ref51 – start-page: 20.7.1 year: 0 ident: ref61 article-title: HfOx based vertical RRAM for cost-effective 3D cross-point architecture without cell selector publication-title: Proc IEEE Int Electron Devices Meeting – ident: ref54 doi: 10.1109/VLSIT.2007.4339708 – ident: ref9 doi: 10.1109/IEDM.2008.4796680 – ident: ref63 doi: 10.1109/TNS.2014.2321833 – ident: ref41 doi: 10.1109/ISSCC.2010.5433948 – ident: ref37 doi: 10.1109/JSSC.2012.2235013 – ident: ref31 doi: 10.1109/VLSIT.2010.5556229 – start-page: 210 year: 0 ident: ref50 article-title: A 130.7 mm 2 2-layer 32Gb ReRAM memory device in 24nm technology publication-title: Proc IEEE Int Solid-State Circuits Conf – ident: ref42 doi: 10.1109/ISSCC.2015.7062963 – ident: ref7 doi: 10.1147/rd.524.0439 – year: 2011 ident: ref23 publication-title: Predictive Technology Model (PTM) – ident: ref71 doi: 10.1109/VLSIC.2010.5560286 – ident: ref38 doi: 10.1109/TED.2015.2492421 – ident: ref25 doi: 10.1109/JETCAS.2015.2426531 – ident: ref19 doi: 10.1109/LED.2010.2078794 – start-page: 1 year: 0 ident: ref22 article-title: Utilizing Sub-5 nm sidewall electrode technology for atomic-scale resistive memory fabrication publication-title: Proc IEEE Symp VLSI Technology – start-page: 224 year: 0 ident: ref43 article-title: Cycling endurance optimization scheme for 1Mb STT-MRAM in 40nm technology publication-title: Proc IEEE Int Solid-State Circuits Conf |
SSID | ssj0065452 |
Score | 2.194494 |
Snippet | This tutorial introduces the basics of emerging nonvolatile memory (NVM) technologies including spin-transfer-torque magnetic random access memory (STTMRAM),... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 43 |
SubjectTerms | Arrays Computer architecture Computer memory Design analysis Devices Electrodes Field programmable gate arrays Flip-flops Magnetic tunneling Microprocessors Nonvolatile memory Phase change random access memory Random access memory Three dimensional Trends |
Title | Emerging Memory Technologies: Recent Trends and Prospects |
URI | https://ieeexplore.ieee.org/document/7495087 https://www.proquest.com/docview/1799091419 https://www.proquest.com/docview/1825529118 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1943-0590 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065452 issn: 1943-0582 databaseCode: RIE dateStart: 20090101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwED-2PemDX1OcTqngk9gtXdu08U3EMYSJsAl7K0kaX5ROtvZB_3rv0g9FRXxqoZc05JLL5T5-B3AuUkOwJ75rmFAuVTlypYqUG2tK69SCSVvubXrPJ4_B3SJctOCyyYUxxtjgMzOgV-vLT5e6IFPZMAqoZmnUhnYUiTJXq5a6nGplWw9yQPFo8ajyYHpMDKez2Q0FcfEBgb-XMK-fZ5AtqvJDEtvjZbwN03pgZVTJ86DI1UC_f8Ns_O_Id2Cr0jOd63Jh7ELLZHuw-QV9sAuCDFJUo8iZUrjtm9OY2fH2fOWgQol9OmXQrCOz1HlYLW1i5nof5uPb-c3ErSopuBr3cO56UqNMY_hIhQhH3MTKi2TKQ-Frpph68pXW3FM6DrnUMhqlhJIjfUHoc0r6B9DJlpk5BEdy1Be1lwZc-YHBb0gkRSzx2icDZG4PWD21ia5QxqnYxUtibxtMJMSNhLiRVNzowUXT5LWE2PiLuEuz2xBWE9uDfs2_pNqE64TA7lAdCjxsddZ8xu1DPhGZmWWBNHhDDkco8eOj33s-hg36f2l16UMnXxXmBPWQXJ3aBfgBINrXlg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAHXgMxGFAkTohu7dqmDTc0MQ1YJ6QNabcqScMF1KE9DvDrsdOuIECIUyvFiaI4cezY_gxwzlNNsCeerR0ubapyZAsZSjtSlNapuCNMubd4wHqP_t04GFfgssyF0Vqb4DPdpF_jy08nakFPZa3Qp5ql4QqsBmhVhHm21lLuMqqWbXzIPkWkRe3Ch-k6vBUPhx0K42JNgn_PgV4_byFTVuWHLDYXTHcL4uXU8riS5-ZiLpvq_Rtq43_nvg2bhaZpXedbYwcqOtuFjS_4gzXg9CRFVYqsmAJu36zyoR3t5ysLVUoc08rDZi2RpdbDdGJSM2d7MOrejDo9u6ilYCs8xXPbFQqlmoOflPOgzXQk3VCkLOCecqQjnzypFHOligImlAjbKeHkCI8T_pwU3j5Us0mmD8ASDDVG5aY-k56vsQ2JBI8EGn7CR_bWwVkubaIKnHEqd_GSGHvD4QlxIyFuJAU36nBRdnnNQTb-Iq7R6paExcLWobHkX1Icw1lCcHeoEPku9jorm_EAkVdEZHqyQBq0kYM2yvzo8PeRT2GtN4r7Sf92cH8E6zSX_A2mAdX5dKGPUSuZyxOzGT8An6ra5w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emerging+Memory+Technologies%3A+Recent+Trends+and+Prospects&rft.jtitle=IEEE+solid+state+circuits+magazine&rft.au=Yu%2C+Shimeng&rft.au=Pai-Yu%2C+Chen&rft.date=2016-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1943-0582&rft.eissn=1943-0590&rft.volume=8&rft.issue=2&rft.spage=43&rft_id=info:doi/10.1109%2FMSSC.2016.2546199&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4098367851 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1943-0582&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1943-0582&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1943-0582&client=summon |