Emerging Memory Technologies: Recent Trends and Prospects
This tutorial introduces the basics of emerging nonvolatile memory (NVM) technologies including spin-transfer-torque magnetic random access memory (STTMRAM), phase-change random access memory (PCRAM), and resistive random access memory (RRAM). Emerging NVM cell characteristics are summarized, and de...
Saved in:
Published in | IEEE solid state circuits magazine Vol. 8; no. 2; pp. 43 - 56 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1943-0582 1943-0590 |
DOI | 10.1109/MSSC.2016.2546199 |
Cover
Summary: | This tutorial introduces the basics of emerging nonvolatile memory (NVM) technologies including spin-transfer-torque magnetic random access memory (STTMRAM), phase-change random access memory (PCRAM), and resistive random access memory (RRAM). Emerging NVM cell characteristics are summarized, and device-level engineering trends are discussed. Emerging NVM array architectures are introduced, including the one-transistor-one-resistor (1T1R) array and the cross-point array with selectors. Design challenges such as scaling the write current and minimizing the sneak path current in cross-point array are analyzed. Recent progress on megabit-to gigabit-level prototype chip demonstrations is summarized. Finally, the prospective applications of emerging NVM are discussed, ranging from the last-level cache to the storage-class memory in the memory hierarchy. Topics of three-dimensional (3D) integration and radiation-hard NVM are discussed. Novel applications beyond the conventional memory applications are also surveyed, including physical unclonable function for hardware security, reconfigurable routing switch for field-programmable gate array (FPGA), logic-in-memory and nonvolatile cache/register/flip-flop for nonvolatile processor, and synaptic device for neuro-inspired computing. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 1943-0582 1943-0590 |
DOI: | 10.1109/MSSC.2016.2546199 |