Identification of Novel Serological Autoantibodies in Takayasu Arteritis Patients Using HuProt Arrays

To identify novel autoantibodies of Takayasu arteritis (TAK) using HuProt array-based approach, a two-phase approach was adopted. In Phase I, serum samples collected from 40 TAK patients, 15 autoimmune disease patients, and 20 healthy subjects were screened to identify TAK-specific autoantibodies us...

Full description

Saved in:
Bibliographic Details
Published inMolecular & cellular proteomics Vol. 20; p. 100036
Main Authors Wen, Xiaoting, Song, Guang, Hu, Chaojun, Pan, Jianbo, Wu, Ziyan, Li, Liubing, Liu, Chenxi, Tian, Xinping, Zhang, Fengchun, Qian, Jiang, Zhu, Heng, Li, Yongzhe
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 2021
Subjects
Online AccessGet full text
ISSN1535-9476
1535-9484
1535-9484
DOI10.1074/mcp.RA120.002119

Cover

More Information
Summary:To identify novel autoantibodies of Takayasu arteritis (TAK) using HuProt array-based approach, a two-phase approach was adopted. In Phase I, serum samples collected from 40 TAK patients, 15 autoimmune disease patients, and 20 healthy subjects were screened to identify TAK-specific autoantibodies using human protein (HuProt) arrays. In phase II, the identified candidate autoantibodies were validated with TAK-focused arrays using an additional cohort comprised of 109 TAK patients, 110 autoimmune disease patients, and 96 healthy subjects. Subsequently, the TAK-specific autoantibodies validated in phase II were further confirmed using western blot analysis. We identified and validated eight autoantibodies as potential TAK-specific diagnostic biomarkers, including anti-SPATA7, -QDPR, -SLC25A2, -PRH2, -DIXDC1, -IL17RB, -ZFAND4, and -NOLC1 antibodies, with AUC of 0.803, 0.801, 0.780, 0.696, 0.695, 0.678, 0.635, and 0.613, respectively. SPATA7 could distinguish TAK from healthy and disease controls with 73.4% sensitivity at 85.4% specificity, while QDPR showed 71.6% sensitivity at 86.4% specificity. SLC25A22 showed the highest sensitivity of 80.7%, but at lower specificity of 67.0%. In addition, PRH2, IL17RB, and NOLC1 showed good specificities of 88.3%, 85.9%, and 86.9%, respectively, but at lower sensitivities (<50%). Finally, DIXDC1 and ZFAND4 showed moderate performance as compared with the other autoantibodies. Using a decision tree model, we could reach a specificity of 94.2% with AUC of 0.843, a significantly improved performance as compared with that by each individual biomarker. The performances of three autoantibodies, namely anti-SPATA7, -QDPR, and -PRH2, were successfully confirmed with western blot analysis. Using this two-phase strategy, we identified and validated eight novel autoantibodies as TAK–specific biomarker candidates, three of which could be readily adopted in a clinical setting. [Display omitted] •HuProt array and TAK-focused arrays were adopted to identify TAK-specific biomarkers.•Eight autoantibodies were identified as potential TAK-specific biomarkers.•The decision tree model could significantly improve biomarker performance.•Anti-SPATA7, -QDPR, and -PRH2 might be potentially adopted in a clinical setting. A two-phase approach was adopted to identify novel autoantibody biomarkers of Takayasu arteritis (TAK) patients. HuProt array together with a TAK-focused array identified eight novel autoantibodies as TAK-specific biomarker candidates. Of them, the anti-SPATA7, -QDPR, and -PRH2 have the potential to be readily adopted in a clinical setting.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1535-9476
1535-9484
1535-9484
DOI:10.1074/mcp.RA120.002119