Extracting a diagnostic gait signature
This research addresses the question of the existence of prominent diagnostic signatures for human walking extracted from kinematics gait data. The proposed method is based on transforming the joint motion trajectories using wavelets to extract spatio-temporal features which are then fed as input to...
Saved in:
| Published in | Pattern recognition Vol. 41; no. 5; pp. 1627 - 1637 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.05.2008
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0031-3203 1873-5142 |
| DOI | 10.1016/j.patcog.2007.11.004 |
Cover
| Summary: | This research addresses the question of the existence of prominent diagnostic signatures for human walking extracted from kinematics gait data. The proposed method is based on transforming the joint motion trajectories using wavelets to extract spatio-temporal features which are then fed as input to a vector quantiser; a self-organising map for classification of walking patterns of individuals with and without pathology. We show that our proposed algorithm is successful in extracting features that successfully discriminate between individuals with and without locomotion impairment. |
|---|---|
| ISSN: | 0031-3203 1873-5142 |
| DOI: | 10.1016/j.patcog.2007.11.004 |