Computational Ultrasound Carotid Artery Imaging With a Few Transceivers: An Emulation Study

Ultrasonography could allow operator-independent examination and continuous monitoring of the carotid artery (CA) but normally requires complex and expensive transducers, especially for 3-D. By employing computational ultrasound imaging (cUSi), using an aberration mask and model-based reconstruction...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 72; no. 6; pp. 721 - 731
Main Authors Hu, Yuyang, Dogan, Didem, Brown, Michael, Leus, Geert, van der Steen, Antonius F. W., Kruizinga, Pieter, Bosch, Johannes G.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.06.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-3010
1525-8955
1525-8955
DOI10.1109/TUFFC.2025.3557374

Cover

More Information
Summary:Ultrasonography could allow operator-independent examination and continuous monitoring of the carotid artery (CA) but normally requires complex and expensive transducers, especially for 3-D. By employing computational ultrasound imaging (cUSi), using an aberration mask and model-based reconstruction, a monitoring device could be constructed with a more affordable simple transducer design comprising only a few elements. We aim to apply the cUSi concept to create a CA monitoring system. The system's possible configurations for the 2-D imaging case were explored using a linear array setup emulating a cUSi device in silico, followed by in vitro testing and in vivo CA imaging. Our study shows enhanced reconstruction performance with the use of an aberrating mask, improved lateral resolution through proper choice of the mask delay variation, and more accurate reconstructions using least-squares with QR (LSQR) decomposition compared to matched filtering (MF). Together, these advancements enable B-mode reconstruction and power Doppler imaging (PDI) of the CA with sufficient quality for monitoring using a configuration of 12 transceivers coupled with a random aberration mask with a maximum delay variation of four wave periods (WPs).
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0885-3010
1525-8955
1525-8955
DOI:10.1109/TUFFC.2025.3557374