The 5.8 T Cryogen-Free Gyrotron Superconducting Magnet System on HL-2A
A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in ser...
Saved in:
| Published in | Plasma science & technology Vol. 16; no. 4; pp. 410 - 414 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.04.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1009-0630 |
| DOI | 10.1088/1009-0630/16/4/20 |
Cover
| Summary: | A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in series, a 4.2 K Gifford-McMahon (GM) refrigerator, a com- pressor, a coil power supply and two temperature monitors. The performance, test and preliminary experimental results of this SCM system are described in this paper. The magnetic field distribu- tion was measured along the axis, and a dummy tube was used for adjusting the magnet system. Finally, the magnet was used for the operation of a 68 GHz/500 kW gyrotron, which is part of an electron cyclotron resonance heating (ECRH) system. With an additional auxiliary coil and after adjusting tile magnet system, a maximum output power for the ECRH system of up to 400 kW was achieved. |
|---|---|
| Bibliography: | 34-1187/TL A 5.8 T cryogen-free superconducting magnet (SCM) system with a warm bore hole of 160 mm in diameter, used for gyrotrons operating in the frequency range from 68 GHz to 140 GHz, is installed on the site of the HL-2A tokamak. The SCM consists of two separate solenoidal magnetic coils connected in series, a 4.2 K Gifford-McMahon (GM) refrigerator, a com- pressor, a coil power supply and two temperature monitors. The performance, test and preliminary experimental results of this SCM system are described in this paper. The magnetic field distribu- tion was measured along the axis, and a dummy tube was used for adjusting the magnet system. Finally, the magnet was used for the operation of a 68 GHz/500 kW gyrotron, which is part of an electron cyclotron resonance heating (ECRH) system. With an additional auxiliary coil and after adjusting tile magnet system, a maximum output power for the ECRH system of up to 400 kW was achieved. ECRH, gyrotron, superconducting magnet, cryogen free ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1009-0630 |
| DOI: | 10.1088/1009-0630/16/4/20 |