Time of Flight Transmission Mode Ultrasound Computed Tomography With Expected Gradient and Boundary Optimization

Objective: Quantitative time of flight in transmission mode ultrasound computed tomography (TFTM USCT) is a promising, cost-effective, and non-invasive modality, particularly suited for functional imaging. However, TFTM USCT encounters resolution challenges due to path information concentration in s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 72; no. 9; pp. 2720 - 2731
Main Authors Ceccato, Roberto C., Pigatto, Andre V., Aster, Richard C., Pai, Chi-Nan, Mueller, Jennifer L., Furuie, Sergio S.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.09.2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2025.3550823

Cover

More Information
Summary:Objective: Quantitative time of flight in transmission mode ultrasound computed tomography (TFTM USCT) is a promising, cost-effective, and non-invasive modality, particularly suited for functional imaging. However, TFTM USCT encounters resolution challenges due to path information concentration in specific medium regions and uncertainty in transducer positioning. This study proposes a method to enhance resolution and robustness, focusing on low-frequency TFTM USCT for pulmonary imaging. Methods: The proposed technique improves the orientation of steepest descent algorithm steps, preventing resolution degradation due to path information concentration, while allowing for a posteriori sensor positioning retrieval. Total variation regularization is employed to stabilize the inverse problem, and a modified Barzilai-Borwein method determined the step size in the steepest descent algorithm. The proposed method was validated through simulations of data on healthy and abnormal cross-sections of a human chest using MATLAB's k-Wave toolbox. Additionally, experimental data were collected using a Verasonics Vantage 64 low-frequency system and a ballistic gel torso-mimicking phantom to assess robustness under a more realistic environment, closer to that of a clinical situation. Results: The results showed that the proposed method significantly improved image quality and successfully retrieved sensor locations from imprecise positioning. Significance: This study is the first to address transducer location uncertainty on a transducer belt in TFTM USCT and to apply an estimated gradient approach. Additionally, low-frequency USCT for lung imaging is quite novel, and this work addresses practical questions that will be important for translational development.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2025.3550823