Improved constraints on the expansion rate of the Universe up to z ∼ 1.1 from the spectroscopic evolution of cosmic chronometers

We present new improved constraints on the Hubble parameter H ( z ) in the redshift range 0.15 < z < 1.1, obtained from the differential spectroscopic evolution of early-type galaxies as a function of redshift. We extract a large sample of early-type galaxies ( ∼ 11000) from several spectrosco...

Full description

Saved in:
Bibliographic Details
Published inJournal of cosmology and astroparticle physics Vol. 2012; no. 8; p. 6
Main Authors Moresco, M, Cimatti, A, Jimenez, R, Pozzetti, L, Zamorani, G, Bolzonella, M, Dunlop, J, Lamareille, F, Mignoli, M, Pearce, H
Format Journal Article
LanguageEnglish
Published United States Institute of Physics (IOP) 01.08.2012
Subjects
Online AccessGet full text
ISSN1475-7516
1475-7516
DOI10.1088/1475-7516/2012/08/006

Cover

More Information
Summary:We present new improved constraints on the Hubble parameter H ( z ) in the redshift range 0.15 < z < 1.1, obtained from the differential spectroscopic evolution of early-type galaxies as a function of redshift. We extract a large sample of early-type galaxies ( ∼ 11000) from several spectroscopic surveys, spanning almost 8 billion years of cosmic lookback time (0.15 < z < 1.42). We select the most massive, red elliptical galaxies, passively evolving and without signature of ongoing star formation. Those galaxies can be used as standard cosmic chronometers, as firstly proposed by Jimenez & Loeb (2002), whose differential age evolution as a function of cosmic time directly probes H ( z ). We analyze the 4000 Å break ( D 4000) as a function of redshift, use stellar population synthesis models to theoretically calibrate the dependence of the differential age evolution on the differential D 4000, and estimate the Hubble parameter taking into account both statistical and systematical errors. We provide 8 new measurements of H ( z ) (see table 4), and determine its change in H ( z ) to a precision of 5–12% mapping homogeneously the redshift range up to z ∼ 1.1; for the first time, we place a constraint on H ( z ) at z ≠0 with a precision comparable with the one achieved for the Hubble constant (about 5–6% at z ∼ 0.2), and covered a redshift range (0.5 < z < 0.8) which is crucial to distinguish many different quintessence cosmologies. These measurements have been tested to best match a ΛCDM model, clearly providing a statistically robust indication that the Universe is undergoing an accelerated expansion. This method shows the potentiality to open a new avenue in constrain a variety of alternative cosmologies, especially when future surveys (e.g. Euclid) will open the possibility to extend it up to z ∼ 2.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1475-7516
1475-7516
DOI:10.1088/1475-7516/2012/08/006