Quantum transport senses community structure in networks

Quantum time evolution exhibits rich physics, attributable to the interplay between the density and phase of a wave function. However, unlike classical heat diffusion, the wave nature of quantum mechanics has not yet been extensively explored in modern data analysis. We propose that the Laplace tran...

Full description

Saved in:
Bibliographic Details
Published inPhysical review. E Vol. 98; no. 2-1; p. 022301
Main Authors Zhao, Chenchao, Song, Jun S
Format Journal Article
LanguageEnglish
Published United States 01.08.2018
Online AccessGet more information
ISSN2470-0053
DOI10.1103/PhysRevE.98.022301

Cover

More Information
Summary:Quantum time evolution exhibits rich physics, attributable to the interplay between the density and phase of a wave function. However, unlike classical heat diffusion, the wave nature of quantum mechanics has not yet been extensively explored in modern data analysis. We propose that the Laplace transform of quantum transport (QT) can be used to construct an ensemble of maps from a given complex network to a circle S^{1}, such that closely related nodes on the network are grouped into sharply concentrated clusters on S^{1}. The resulting QT clustering (QTC) algorithm is as powerful as the state-of-the-art spectral clustering in discerning complex geometric patterns and more robust when clusters show strong density variations or heterogeneity in size. The observed phenomenon of QTC can be interpreted as a collective behavior of the microscopic nodes that evolve as macroscopic cluster "orbitals" in an effective tight-binding model recapitulating the network. python source code implementing the algorithm and examples are available at https://github.com/jssong-lab/QTC.
ISSN:2470-0053
DOI:10.1103/PhysRevE.98.022301