Diagnostic Fail Data Minimization Using an N -Cover Algorithm

With the increasing transistor count and design complexity of modern integrated circuits, a large volume of fail data is collected by the tester for a failing die. This fail data is analyzed by a diagnosis procedure to obtain information about the defects in the die that caused it to fail. However,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on very large scale integration (VLSI) systems Vol. 24; no. 3; pp. 1198 - 1202
Main Authors Bodhe, Shraddha, Amyeen, M. Enamul, Pomeranz, Irith, Venkataraman, Srikanth
Format Journal Article
LanguageEnglish
Published IEEE 01.03.2016
Subjects
Online AccessGet full text
ISSN1063-8210
1557-9999
DOI10.1109/TVLSI.2015.2432717

Cover

Abstract With the increasing transistor count and design complexity of modern integrated circuits, a large volume of fail data is collected by the tester for a failing die. This fail data is analyzed by a diagnosis procedure to obtain information about the defects in the die that caused it to fail. However, large portions of the fail data are not necessary for diagnosis. As a result, the diagnosis procedure spends time analyzing unnecessary data, thus decreasing its speed and throughput. We present a methodology to minimize the amount of fail data that is provided to the diagnosis procedure without compromising the diagnosis accuracy (DA). Our methodology evaluates the outputs at which the tests failed to eliminate noncontributing failing tests. The efficacy of our algorithm is demonstrated using fail data from industry fabricated chips. The experimental results show that, on average, our algorithm achieves fail data minimization of 40% while maintaining an average DA of 95%. The speed of the diagnosis procedure is increased by 39%.
AbstractList With the increasing transistor count and design complexity of modern integrated circuits, a large volume of fail data is collected by the tester for a failing die. This fail data is analyzed by a diagnosis procedure to obtain information about the defects in the die that caused it to fail. However, large portions of the fail data are not necessary for diagnosis. As a result, the diagnosis procedure spends time analyzing unnecessary data, thus decreasing its speed and throughput. We present a methodology to minimize the amount of fail data that is provided to the diagnosis procedure without compromising the diagnosis accuracy (DA). Our methodology evaluates the outputs at which the tests failed to eliminate noncontributing failing tests. The efficacy of our algorithm is demonstrated using fail data from industry fabricated chips. The experimental results show that, on average, our algorithm achieves fail data minimization of 40% while maintaining an average DA of 95%. The speed of the diagnosis procedure is increased by 39%.
Author Bodhe, Shraddha
Pomeranz, Irith
Venkataraman, Srikanth
Amyeen, M. Enamul
Author_xml – sequence: 1
  givenname: Shraddha
  surname: Bodhe
  fullname: Bodhe, Shraddha
  email: sbodhe@purdue.edu
  organization: Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA
– sequence: 2
  givenname: M. Enamul
  surname: Amyeen
  fullname: Amyeen, M. Enamul
  email: enamul.amyeen@intel.com
  organization: Intel Corp., Hillsboro, OR, USA
– sequence: 3
  givenname: Irith
  surname: Pomeranz
  fullname: Pomeranz, Irith
  email: pomeranz@purdue.edu
  organization: Sch. of Electr. & Comput. Eng., Purdue Univ., West Lafayette, IN, USA
– sequence: 4
  givenname: Srikanth
  surname: Venkataraman
  fullname: Venkataraman, Srikanth
  email: srikanth.venkataraman@intel.com
  organization: Intel Corp., Hillsboro, OR, USA
BookMark eNp9kD1PwzAQhi1UJNrCH4AlI0vKne04ycBQtRQqFRhoWSPXcYpRahc7RYJfT_ohBgZuuRve53T39EjHOqsJuUQYIEJ-M3-dvUwHFDAZUM5oiukJ6WKSpHHeVqedQbA4owhnpBfCOwBynkOX3I6NXFkXGqOiiTR1NJaNjB6NNWvzLRvjbLQIxq4iaaOnKB65T-2jYb1y3jRv63NyWsk66Itj75PF5G4-eohnz_fT0XAWKwbQxCXPhWLL9oSs1LKSABVkJaOCV5xptlQlV8BkyQFpWtKMi3KZllqhSIWSImF9cn3Yu_HuY6tDU6xNULqupdVuGwrMUAAVlGZtNDtElXcheF0VyjT7Rxrf_lcgFDtjxd5YsTNWHI21KP2DbrxZS__1P3R1gIzW-hdIERMUnP0A69h4Pw
CODEN IEVSE9
CitedBy_id crossref_primary_10_1109_TVLSI_2023_3304380
crossref_primary_10_1145_3661310
crossref_primary_10_1109_TVLSI_2016_2533444
Cites_doi 10.1109/43.748164
10.1109/ICCAD.1992.279361
10.1109/DFT.2014.6962064
10.1007/BF01581106
10.1109/DFT.2009.29
10.1109/TEST.2010.5699250
10.1109/TEST.2012.6401564
10.1109/DFT.2011.57
10.1109/ATS.2013.22
10.1109/TCAD.2012.2234827
10.1109/MDAT.2014.2313080
10.1109/DFT.2013.6653576
10.1145/2228360.2228462
10.1109/TEST.2000.894213
10.1016/0377-2217(95)00159-X
10.1109/ATS.2012.48
10.1109/TCAD.2013.2287184
10.1109/54.32421
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
DOI 10.1109/TVLSI.2015.2432717
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9999
EndPage 1202
ExternalDocumentID 10_1109_TVLSI_2015_2432717
7115164
Genre orig-research
GrantInformation_xml – fundername: Semiconductor Research Corporation
  grantid: 2013-TJ-2469
  funderid: 10.13039/100000028
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c300t-d496c3b0638deafa00f08d3264f43e3bcd4c03ad40127d2846db7dec1676ca653
IEDL.DBID RIE
ISSN 1063-8210
IngestDate Sat Sep 27 19:42:03 EDT 2025
Wed Oct 01 02:59:20 EDT 2025
Thu Apr 24 22:50:29 EDT 2025
Tue Aug 26 16:43:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Defect diagnosis
greedy set cover
fail data collection
testing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c300t-d496c3b0638deafa00f08d3264f43e3bcd4c03ad40127d2846db7dec1676ca653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1816026228
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_1816026228
crossref_primary_10_1109_TVLSI_2015_2432717
ieee_primary_7115164
crossref_citationtrail_10_1109_TVLSI_2015_2432717
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-March
2016-3-00
20160301
PublicationDateYYYYMMDD 2016-03-01
PublicationDate_xml – month: 03
  year: 2016
  text: 2016-March
PublicationDecade 2010
PublicationTitle IEEE transactions on very large scale integration (VLSI) systems
PublicationTitleAbbrev TVLSI
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref15
ref14
cormen (ref17) 2009
ref11
ref10
garey (ref20) 1979
ye (ref12) 2013; 32
ref2
ref1
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
lutz (ref21) 2013
ref6
ref5
References_xml – ident: ref3
  doi: 10.1109/43.748164
– ident: ref2
  doi: 10.1109/ICCAD.1992.279361
– ident: ref14
  doi: 10.1109/DFT.2014.6962064
– ident: ref19
  doi: 10.1007/BF01581106
– ident: ref6
  doi: 10.1109/DFT.2009.29
– ident: ref4
  doi: 10.1109/TEST.2010.5699250
– year: 2013
  ident: ref21
  publication-title: Learning Python
– ident: ref15
  doi: 10.1109/TEST.2012.6401564
– ident: ref5
  doi: 10.1109/DFT.2011.57
– ident: ref9
  doi: 10.1109/ATS.2013.22
– volume: 32
  start-page: 723
  year: 2013
  ident: ref12
  article-title: Board-level functional fault diagnosis using artificial neural networks, support-vector machines, and weighted-majority voting
  publication-title: IEEE Trans Comput -Aided Design Integr Circuits Syst
  doi: 10.1109/TCAD.2012.2234827
– ident: ref13
  doi: 10.1109/MDAT.2014.2313080
– ident: ref7
  doi: 10.1109/DFT.2013.6653576
– ident: ref8
  doi: 10.1145/2228360.2228462
– ident: ref16
  doi: 10.1109/TEST.2000.894213
– ident: ref18
  doi: 10.1016/0377-2217(95)00159-X
– year: 2009
  ident: ref17
  publication-title: Introduction to Algorithms
– ident: ref10
  doi: 10.1109/ATS.2012.48
– year: 1979
  ident: ref20
  publication-title: Computers and Intractability A Guide to the Theory of NP-Completeness
– ident: ref11
  doi: 10.1109/TCAD.2013.2287184
– ident: ref1
  doi: 10.1109/54.32421
SSID ssj0014490
Score 2.1919265
Snippet With the increasing transistor count and design complexity of modern integrated circuits, a large volume of fail data is collected by the tester for a failing...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1198
SubjectTerms Algorithm design and analysis
Algorithms
Circuit faults
Counting
Data mining
Data models
Defect diagnosis
Diagnosis
Effectiveness
fail data collection
Fault diagnosis
greedy set cover
Integrated circuit modeling
Integrated circuits
Methodology
Minimization
testing
Very large scale integration
Title Diagnostic Fail Data Minimization Using an N -Cover Algorithm
URI https://ieeexplore.ieee.org/document/7115164
https://www.proquest.com/docview/1816026228
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9999
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014490
  issn: 1063-8210
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLaAExx4DcR4KUjcoFvWpGl7RMAEiO3CQ7tVeRUmRoegu_DridNuIECIWw-OGsWu_aX-bAMcCsNM4owlwF4kAVca_SBNgjyNdZx3lKJ-SkSvLy7u-NUgGszB8awWxlrryWe2hY8-l2_GeoK_ytqxgy8O3s_DfJyIqlZrljHgPK06DwgWJO4eMy2QoWn79v765hJZXFEr5CyM_XCyzyDkp6r8cMU-vnRXoDfdWUUreWpNStXS79-aNv5366uwXANNclJZxhrM2WIdlr60H2wA0mGQZ-ckSFcOR-RMlpL0hsXwua7OJJ5RQGRB-iQ4RbYnORk9jF-H5ePzBtx1z29PL4J6nEKgGaVlYHgqNFOIUYyVuaQ0p4lx8I3nnFmmtOGaMmk4ZqONC1vCqNhY3RGx0FJEbBMWinFht4BYE1IeS6zCdQjAhDIRVkoVIYJy3jVqQmd6vpmue43jyItR5u8cNM28TjLUSVbrpAlHszUvVaeNP6UbeMgzyfp8m3AwVWPmvhNMfsjCjidvmUMyOG0rDJPt35fuwKJ7gaj4ZbuwUL5O7J4DHKXa95b2ActHzqQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9tAEB0BPUAPtBCqBkq7SL2Bw8a7XttHFIgCJLk0QblZ-2UaNTgVOBd-PTtrJyBAVW8-zMqrnfHMW8-bGYCfwjCTOGMJsBdJwJVGP0iTIE9jHedtpaifEjEYit6YX02iyRqcrGphrLWefGZb-Ohz-WauF_ir7DR28MXB-3X4EHHOo6paa5Uz4Dyteg8IFiTuJrMskaHp6eim_-sSeVxRK-QsjP14sucw5OeqvHHGPsJ0P8FgubeKWPKntShVSz--atv4v5v_DNs11CRnlW3swJotduHjiwaEDUBCDDLtnATpyumMnMtSksG0mN7V9ZnEcwqILMiQBB3ke5Kz2e38flr-vtuDcfdi1OkF9UCFQDNKy8DwVGimEKUYK3NJaU4T4wAczzmzTGnDNWXScMxHGxe4hFGxsbotYqGliNgX2Cjmhf0KxJqQ8lhiHa7DACaUibBSqggxlPOvURPay_PNdN1tHIdezDJ_66Bp5nWSoU6yWidNOF6t-Vv12vindAMPeSVZn28TjpZqzNyXgukPWdj54iFzWAbnbYVhsv_-0h-w2RsN-ln_cnh9AFvuZaJim32DjfJ-YQ8d_CjVd291T8sR0fE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Diagnostic+Fail+Data+Minimization+Using+an+N-Cover+Algorithm&rft.jtitle=IEEE+transactions+on+very+large+scale+integration+%28VLSI%29+systems&rft.au=Bodhe%2C+Shraddha&rft.au=Amyeen%2C+M.+Enamul&rft.au=Pomeranz%2C+Irith&rft.au=Venkataraman%2C+Srikanth&rft.date=2016-03-01&rft.issn=1063-8210&rft.eissn=1557-9999&rft.volume=24&rft.issue=3&rft.spage=1198&rft.epage=1202&rft_id=info:doi/10.1109%2FTVLSI.2015.2432717&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TVLSI_2015_2432717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8210&client=summon