Stability of Leray weak solutions to 3D Navier-Stokes equations

In this article, we show that if the Leray weak solution \(\mathbf{u}\) of the three-dimensional Navier-Stokes system satisfies $$\nabla \mathbf{u}\in L^p(0,\infty;\dot B^0_{q,\infty}(\mathbb{R}^3)),\quad\frac{2}{p}+\frac{3}{q} =2,\quad \frac{3}{2}< q< \infty, $$ or $$\nabla \mathbf{u}\in L^\f...

Full description

Saved in:
Bibliographic Details
Published inElectronic journal of differential equations Vol. 2025; no. 1-??; pp. 79 - 25
Main Authors Zhang, Zujin, Yuan, Weijun, Yao, Zhengan
Format Journal Article
LanguageEnglish
Published Texas State University 24.07.2025
Subjects
Online AccessGet full text
ISSN1072-6691
1072-6691
DOI10.58997/ejde.2025.79

Cover

More Information
Summary:In this article, we show that if the Leray weak solution \(\mathbf{u}\) of the three-dimensional Navier-Stokes system satisfies $$\nabla \mathbf{u}\in L^p(0,\infty;\dot B^0_{q,\infty}(\mathbb{R}^3)),\quad\frac{2}{p}+\frac{3}{q} =2,\quad \frac{3}{2}< q< \infty, $$ or $$\nabla \mathbf{u}\in L^\frac{2}{2-r}(0,\infty;\dot B^{-r}_{\infty,\infty}(\mathbb{R}^3)),\quad 0<r < 1,$$ then \(\mathbf{u}\) is uniformly stable, under small perturbation of initial data and external force, is asymptotically stable in the \(L^2\) sense, is unique amongst all the Leray weak solutions, and satisfies some energy type equalities. Also under spectral condition on the initial perturbation, we obtain optimal upper and lower bounds of convergence rates. Our results extend the results in  [6,11] For more information see https://ejde.math.txstate.edu/Volumes/2025/79/abstr.html
ISSN:1072-6691
1072-6691
DOI:10.58997/ejde.2025.79