A green energy research: forecasting of wind power for a cleaner environment using robust hybrid metaheuristic model
Wind is a stochastic and intermittent renewable energy source. Due to its nature, it is extremely hard to forecast wind power. Accurate wind power forecasting can be encouraging and motivating for investors to shed light on future uncertainties caused by global warming. Thus, CO 2 and other greenhou...
        Saved in:
      
    
          | Published in | Environmental science and pollution research international Vol. 29; no. 34; pp. 50998 - 51010 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Berlin/Heidelberg
          Springer Berlin Heidelberg
    
        01.07.2022
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0944-1344 1614-7499 1614-7499  | 
| DOI | 10.1007/s11356-021-16494-7 | 
Cover
| Summary: | Wind is a stochastic and intermittent renewable energy source. Due to its nature, it is extremely hard to forecast wind power. Accurate wind power forecasting can be encouraging and motivating for investors to shed light on future uncertainties caused by global warming. Thus, CO
2
and other greenhouse gases (GHG) which are harmful to the environment will not be released into the atmosphere, while generating electrical energy. This paper presents a novel precise, fast and powerful hybrid metaheuristic wind power forecasting approach based on statistical and mathematical data from real weather stations. The model was developed as a hybrid metaheuristic algorithm based on artificial neural networks (ANNs), particle swarm optimization (PSO) and radial movement optimization (RMO). Real-time wind data was gathered from wind measuring stations (WMS) at two separate places in Burdur and Osmaniye cities, Turkey. The key contribution of this new model is the ability to perform wind power forecasting studies, without needing wind speed data, with high accuracy and rapid solutions. Also, wind power forecasting studies with high accuracy have been carried out despite the height differences between the sensors. That is, for WMS-1 and WMS-2, it has succeeded the wind power forecasting at 61 m and 60.3 m using temperature (3 m), humidity (3 m) and pressure (3.5 m) data. The performance results were presented in tables and graphs. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
| ISSN: | 0944-1344 1614-7499 1614-7499  | 
| DOI: | 10.1007/s11356-021-16494-7 |