A green energy research: forecasting of wind power for a cleaner environment using robust hybrid metaheuristic model

Wind is a stochastic and intermittent renewable energy source. Due to its nature, it is extremely hard to forecast wind power. Accurate wind power forecasting can be encouraging and motivating for investors to shed light on future uncertainties caused by global warming. Thus, CO 2 and other greenhou...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 29; no. 34; pp. 50998 - 51010
Main Authors Kerem, Alper, Saygin, Ali, Rahmani, Rasoul
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0944-1344
1614-7499
1614-7499
DOI10.1007/s11356-021-16494-7

Cover

More Information
Summary:Wind is a stochastic and intermittent renewable energy source. Due to its nature, it is extremely hard to forecast wind power. Accurate wind power forecasting can be encouraging and motivating for investors to shed light on future uncertainties caused by global warming. Thus, CO 2 and other greenhouse gases (GHG) which are harmful to the environment will not be released into the atmosphere, while generating electrical energy. This paper presents a novel precise, fast and powerful hybrid metaheuristic wind power forecasting approach based on statistical and mathematical data from real weather stations. The model was developed as a hybrid metaheuristic algorithm based on artificial neural networks (ANNs), particle swarm optimization (PSO) and radial movement optimization (RMO). Real-time wind data was gathered from wind measuring stations (WMS) at two separate places in Burdur and Osmaniye cities, Turkey. The key contribution of this new model is the ability to perform wind power forecasting studies, without needing wind speed data, with high accuracy and rapid solutions. Also, wind power forecasting studies with high accuracy have been carried out despite the height differences between the sensors. That is, for WMS-1 and WMS-2, it has succeeded the wind power forecasting at 61 m and 60.3 m using temperature (3 m), humidity (3 m) and pressure (3.5 m) data. The performance results were presented in tables and graphs.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0944-1344
1614-7499
1614-7499
DOI:10.1007/s11356-021-16494-7