Stochastic wavevector model for rapidly distorted compressible turbulence
A stochastic wavevector approach is formulated to accurately represent compressible turbulence subject to rapid deformations. This approach is inspired by the incompressible particle representation model of Kassinos & Reynolds (1994), and preserves the exact nature of compressible rapid distorti...
Saved in:
Published in | Journal of fluid mechanics Vol. 1010 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cambridge, UK
Cambridge University Press
08.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-1120 1469-7645 |
DOI | 10.1017/jfm.2025.366 |
Cover
Summary: | A stochastic wavevector approach is formulated to accurately represent compressible turbulence subject to rapid deformations. This approach is inspired by the incompressible particle representation model of Kassinos & Reynolds (1994), and preserves the exact nature of compressible rapid distortion theory (RDT). The adoption of a stochastic – rather than Fourier – perspective simplifies the transformation of statistics to physical space and serves as a starting point for the development of practical turbulence models. We assume small density fluctuations and isentropic flow to obtain a transport equation for the pressure fluctuation. This results in four fewer transport equations compared with the compressible RDT model of Yu & Girimaji (Phys. Fluids, vol. 19, 2007, 041702). The final formulation is closed in spectral space and only requires numerical approximation for the transformation integrals. The use of Monte Carlo for unit wavevector integration motivates the representation of the moments as stochastic variables. Consistency between the Fourier and stochastic representation is demonstrated by showing equivalency between the evolution equations for the velocity spectrum tensor in both representations. Sample clustering with respect to orientation allows for different techniques to be used for the wavevector magnitude integration. The performance of the stochastic model is evaluated for axially compressed turbulence, serving as a simplified model for shock–turbulence interaction, and is compared with linear interaction approximations and direct numerical simulation (DNS). Pure and compressed sheared turbulence at different distortion Mach numbers are also computed and compared with RDT/DNS data. Finally, two additional deformations are applied and compared with solenoidal and pressure-released limits to demonstrate the modelling capability for generic rapid deformations. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2025.366 |