Up-conversion of Er3+/yb3+ co-doped transparent glass-ceramics containing Ba2LaF7 nanocrystals
The up-conversion of Er3+/yb3+ co-doped transparent glass-ceramics 50SiO2-10A1F3-5TiO2-30BaF2-4LaF3-0.5ErF3-0.5YbF3 containing Ba2LaF7 nanocrystals under the changing of heat treatment temperature and time were investigated. The Ba2LaF7 nanocrystals precipitated from the glass matrix was confirmed b...
Saved in:
Published in | Journal of rare earths Vol. 31; no. 9; pp. 843 - 848 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-0721 2509-4963 |
DOI | 10.1016/S1002-0721(12)60368-8 |
Cover
Summary: | The up-conversion of Er3+/yb3+ co-doped transparent glass-ceramics 50SiO2-10A1F3-5TiO2-30BaF2-4LaF3-0.5ErF3-0.5YbF3 containing Ba2LaF7 nanocrystals under the changing of heat treatment temperature and time were investigated. The Ba2LaF7 nanocrystals precipitated from the glass matrix was confirmed by X-ray diffraction (XRD). The structural investigation carried out by XRD and trans- mission electron microscopy (TEM) evidenced the formation of cubic Ba2LaF7 nanocrystals with crystal size of about 14 nm. Comparing with the samples before heat treatment, the high efficiency up-conversion emission of Er3+/Yb3+ co-doped samples was observed in the glass-ceramics under 980 nm laser diode excitation. The increase in red emission intensity bands was stronger than the green bands when the crystal size increased. The mechanism for the up-conversion process in the glass-ceramics and the reasons for the increase of Er3+/yb3+ co-doped up-conversion intensity after heat treatment were discussed. |
---|---|
Bibliography: | The up-conversion of Er3+/yb3+ co-doped transparent glass-ceramics 50SiO2-10A1F3-5TiO2-30BaF2-4LaF3-0.5ErF3-0.5YbF3 containing Ba2LaF7 nanocrystals under the changing of heat treatment temperature and time were investigated. The Ba2LaF7 nanocrystals precipitated from the glass matrix was confirmed by X-ray diffraction (XRD). The structural investigation carried out by XRD and trans- mission electron microscopy (TEM) evidenced the formation of cubic Ba2LaF7 nanocrystals with crystal size of about 14 nm. Comparing with the samples before heat treatment, the high efficiency up-conversion emission of Er3+/Yb3+ co-doped samples was observed in the glass-ceramics under 980 nm laser diode excitation. The increase in red emission intensity bands was stronger than the green bands when the crystal size increased. The mechanism for the up-conversion process in the glass-ceramics and the reasons for the increase of Er3+/yb3+ co-doped up-conversion intensity after heat treatment were discussed. 11-2788/TF up-conversion; BazLaF7; nanocrystals; glass-ceramics; rare earths Ho Kim Dan, ZHOU Dacheng , Wang Rongfei , Tran Minh Hau , JIAO Qing , YU Xue , QIU Jianbei (1. School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China; 2. Department of Researrch Admini- stration and International Relations, Tuyhoa Industrial College, Phuyen 620900, Vietnam) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/S1002-0721(12)60368-8 |